×

A sublinear version of Schur’s lemma and elliptic PDE. (English) Zbl 1384.35031

Authors’ abstract: We study the weighted norm inequality of \((1,q)\)-type, \[ \| G\nu \|_{L^q(\Omega, d\sigma)} \leq C \| \nu \|\;\;\text{for all}\; \nu \in \mathscr{M}^+(\Omega), \] along with its weak-type analogue, for \(0 < q < 1\), where \(G\) is an integral operator associated with the nonnegative kernel \(G\) on \(\Omega\times\Omega\). Here \(\mathscr{M}^+(\Omega)\) denotes the class of positive Radon measures in \(\Omega\); \(\sigma, \nu \in \mathscr{M}^+(\Omega)\), and \(\| \nu\|=\nu(\Omega)\). For both weak-type and strong-type inequalities, we provide conditions which characterize the measures \(\sigma\) for which such an embedding holds. The strong-type \((1,q)\)-inequality for \(0< q<1\) is closely connected with existence of a positive function \(u\) such that \(u \geq G(u^q \sigma)\), i.e., a supersolution to the integral equation \[ u - G(u^q \sigma) = 0,\quad u \in L^q_{\text{loc}} (\Omega, \sigma). \] This study is motivated by solving sublinear equations involving the fractional Laplacian, \[ (-\Delta)^{\frac{\alpha}{2}} u - u^q \sigma = 0, \] in domains \(\Omega \subseteq \mathbb{R}^n\) which have a positive Green function \(G\) for \(0 < \alpha < n\).

MSC:

35J61 Semilinear elliptic equations
31B15 Potentials and capacities, extremal length and related notions in higher dimensions
30L99 Analysis on metric spaces
42B25 Maximal functions, Littlewood-Paley theory
35R11 Fractional partial differential equations
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] 10.1007/978-3-662-03282-4
[2] ; Ancona, Nagoya Math. J., 165, 123, (2002)
[3] ; Brelot, Lectures on potential theory. Lectures on Mathematics, 19, (1960) · Zbl 0098.06903
[4] 10.1007/s00526-014-0722-0 · Zbl 1319.35063
[5] 10.1016/j.na.2016.08.008 · Zbl 1352.35062
[6] 10.1016/j.jfa.2016.10.010 · Zbl 1376.35080
[7] 10.1112/S0024610706023064 · Zbl 1109.46036
[8] 10.1007/978-1-4612-5208-5
[9] ; Frazier, Ann. Inst. Fourier (Grenoble), 67, 1393, (2017)
[10] 10.1112/jlms/jdu057 · Zbl 1311.42035
[11] ; Frostman, Kungl. Fysiografiska Sällskapets i Lund Förhandlingar, 20, 1, (1950)
[12] 10.1007/BF02546356 · Zbl 0115.31901
[13] 10.5802/aif.196 · Zbl 0128.33103
[14] 10.2307/2034667 · Zbl 0161.32404
[15] 10.1016/j.jfa.2004.12.010 · Zbl 1082.31003
[16] 10.1007/s00209-010-0826-y · Zbl 1248.31004
[17] 10.5565/PUBLMAT_54210_10 · Zbl 1246.30087
[18] 10.1090/S0002-9947-99-02215-1 · Zbl 0948.35044
[19] ; Marcus, Nonlinear second order elliptic equations involving measures. de Gruyter Series in Nonlinear Analysis and Applications, 21, (2014)
[20] 10.1073/pnas.20.8.485 · JFM 60.0429.02
[21] ; Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces Lp. Astérisque, 11, (1974)
[22] 10.1007/978-3-642-15564-2 · Zbl 1217.46002
[23] 10.1515/crelle-2014-0123 · Zbl 1376.42010
[24] 10.1007/BF01450929 · Zbl 0619.47016
[25] 10.1007/978-3-319-52742-0_12 · Zbl 1359.35071
[26] ; Sinnamon, Matematiche (Catania), 57, 185, (2002)
[27] ; Stein, Introduction to Fourier analysis on Euclidean spaces. Princeton Mathematical Series, 32, (1971) · Zbl 0232.42007
[28] ; Szeptycki, Dissertationes Math. (Rozprawy Mat.), 231, 1, (1984)
[29] 10.1007/978-3-0348-8672-7_18
[30] ; Verbitsky, 50 years with Hardy spaces: a tribute to Victor Havin. Operator Theory: Adv. Appl., 261, 465, (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.