×

zbMATH — the first resource for mathematics

The gap between Gromov-Vague and Gromov-Hausdorff-vague topology. (English) Zbl 1384.60016
Summary: In our previous paper [Ann. Probab. 45, No. 2, 625–667 (2017; Zbl 1388.60120)] an invariance principle is stated for a class of strong Markov processes on tree-like metric measure spaces. It is shown that if the underlying spaces converge Gromov vaguely, then the processes converge in the sense of finite dimensional distributions. Further, if the underlying spaces converge Gromov-Hausdorff vaguely, then the processes converge weakly in path space. In this paper we systematically introduce and study the Gromov-vague and the Gromov-Hausdorff-vague topology on the space of equivalence classes of metric boundedly finite measure spaces. The latter topology is closely related to the Gromov-Hausdorff-Prohorov metric which is defined on different equivalence classes of metric measure spaces. We explain the necessity of these two topologies via several examples, and close the gap between them. That is, we show that convergence in Gromov-vague topology implies convergence in Gromov-Hausdorff-vague topology if and only if the so-called lower mass-bound property is satisfied. Furthermore, we prove and disprove Polishness of several spaces of metric measure spaces in the topologies mentioned above. As an application, we consider the Galton-Watson tree with critical offspring distribution of finite variance conditioned to not get extinct, and construct the so-called Kallenberg-Kesten tree as the weak limit in Gromov-Hausdorff-vague topology when the edge length is scaled down to go to zero.

MSC:
60B05 Probability measures on topological spaces
60B10 Convergence of probability measures
05C80 Random graphs (graph-theoretic aspects)
60B99 Probability theory on algebraic and topological structures
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Abraham, Romain; Delmas, Jean-François; Hoscheit, Patrick, A note on the Gromov-Hausdorff-prokhorov distance between (locally) compact metric measure spaces, Electron. J. Probab., 18, 14, 1-21, (2013) · Zbl 1285.60004
[2] Abraham, Romain; Delmas, Jean-François; Hoscheit, Patrick, Exit times for an increasing Lévy tree-valued process, Probab. Theory Related Fields, 159, 1-2, 357-403, (2014) · Zbl 1302.60077
[3] Lougi Addario-Berry, Nicolas Broutin, Christina Goldschmidt, Grégory Miermont, The scaling limit of the minimum spanning tree of the complete graph, 2013. arXiv:1301.1664. · Zbl 1407.60013
[4] Aldous, David, The continuum random tree III, Ann. Probab., 21, 248-289, (1993) · Zbl 0791.60009
[5] Siva Athreya, Wolfgang Löhr, Anita Winter, Invariance principle for variable speed random walks on trees. Ann. Probab., 49 pages, 2015, (in press). arXiv:1404.6290. · Zbl 1388.60120
[6] Barlow, Martin T.; Kumagai, Takashi, Random walk on the incipient infinite cluster on trees, Illinois J. Math., 50, 1, 33-65, (2006) · Zbl 1110.60090
[7] Blumberg, Andrew J.; Gal, Itamar; Mandell, Michael A.; Pancia, Matthew, Robust statistics, hypothesis testing, and confidence intervals for persistent homology on metric measure spaces, Found. Comput. Math., 14, 4, 745-789, (2014) · Zbl 1364.55016
[8] Burago, Dmitri; Burago, Yuri; Ivanov, Sergei, (A Course in Metric Geometry, Graduate Studies in Mathematics, vol. 33, (2001), AMS Boston, MA) · Zbl 0981.51016
[9] Carlson, Gunnar, Topological pattern recognition for point cloud data, Acta Numer., 23, 289-368, (2014) · Zbl 1398.68615
[10] Cohn, Donald L., Measure theory, (1980), Birkhäuser · Zbl 0436.28001
[11] Croydon, David A., Volume growth and heat kernel estimates for the continuum random tree, Probab. Theory Related Fields, 140, 207-238, (2008) · Zbl 1133.62066
[12] Curien, Nicolas; Haas, Bénédicte, The stable trees are nested, Probab. Theory Related Fields, 157, 847-883, (2013) · Zbl 1286.60074
[13] Duquesne, Thomas, A limit theorem for the contour process of conditioned Galton-Watson trees, Ann. Probab., 31, 996-1027, (2003) · Zbl 1025.60017
[14] Duquesne, Thomas; Le Gall, Jean-François, Random trees, Lévy processes and spatial branching processes, Astérisque, 281, vi+147, (2002) · Zbl 1037.60074
[15] Duquesne, Thomas; Wang, Guanying, Exceptionally small balls in stable trees, Bull. Soc. Math. France, 142, 2, 223-254, (2014) · Zbl 1327.60168
[16] Evans, Steven N.; Winter, Anita, Subtree prune and re-graft: A reversible real-tree valued Markov chain, Ann. Probab., 34, 3, 918-961, (2006) · Zbl 1101.60054
[17] Fukaya, Kenji, Collapsing of Riemannian manifolds and eigenvalues of Laplace operators, Invent. Math., 87, 517-547, (1987) · Zbl 0589.58034
[18] Fukushima, Masatoshi; Oshima, Yoichi; Takeda, Masayoshi, (Dirichlet Forms and Symmetric Markov Processes, de Gruyter Studies in Mathematics, vol. 19, (2011), Walter de Gruyter & Co. Berlin) · Zbl 1227.31001
[19] Gorostiza, Luis G.; Wakolbinger, Anton, Persistence criteria for a class of critical branching particle systems in continuous time, Ann. Probab., 19, 1, 266-288, (1991) · Zbl 0732.60093
[20] Greven, Andreas; Pfaffelhuber, Peter; Winter, Anita, Convergence in distribution of random metric measure spaces (\(\Lambda\)-coalescent measure trees), Probab. Theory Related Fields, 145, 1-2, 285-322, (2009) · Zbl 1215.05161
[21] Greven, Andreas; Pfaffelhuber, Peter; Winter, Anita, Tree-valued resampling dynamics: martingale problems and applications, Probab. Theory Related Fields, 155, 3-4, 789-838, (2013) · Zbl 1379.60099
[22] Greven, Andreas; Popovic, Lea; Winter, Anita, Genealogy of catalytic branching models, Ann. Appl. Probab., 19, 3, 1232-1272, (2009) · Zbl 1178.60057
[23] Gromov, Misha, (Metric Structures for Riemannian and Non-Riemannian Spaces, Progress in Mathematics, vol. 152, (1999), Birkhäuser Boston Inc. Boston, MA), Based on the 1981 French original · Zbl 0953.53002
[24] Haas, Bénédicte; Miermont, Grégory, Scaling limits of Markov branching trees with applications to Galton-Watson and random unordered trees, Ann. Probab., 40, 6, 2589-2666, (2012) · Zbl 1259.60033
[25] Hui He, Matthias Winkel, Invariance principles for pruning processes of Galton-Watson trees, 2014. arXiv:1409.1014.
[26] Kallenberg, Olav, Stability of critical cluster fields, Math. Nachr., 77, 7-43, (1977) · Zbl 0361.60058
[27] Kesten, Harry, Subdiffusive behavior of random walk on a random cluster, Ann. Inst. Henri Poincaré Probab. Stat., 22, 4, 425-487, (1986) · Zbl 0632.60106
[28] Kuwae, Kazhiro; Shioya, Takashi, Convergence of spectral structure: a functional analytic theory and its application to spectral geometry, Anal. Geom., 11, 4, 599-673, (2003) · Zbl 1092.53026
[29] Le Cam, Lucien, Convergence in distribution of stochastic processes, Univ. Calif. Publ. Stat., 2, 207-236, (1957) · Zbl 0077.12301
[30] Le Gall, Jean-François, The topological structure of scaling limits of large planar maps, Invent. Math., 169, 3, 621-670, (2007) · Zbl 1132.60013
[31] Löhr, Wolfgang, Equivalence of Gromov-prohorov- and gromov’s \(\square_{\bar{}}_\lambda\)-metric on the space of metric measure spaces, Electron. Commun. Probab., 18, 17, 1-10, (2013) · Zbl 1349.60003
[32] Löhr, Wolfgang; Voisin, Guillaume; Winter, Anita, Convergence of bi-measure \(\mathbb{R}\)-trees and the pruning process, Ann. Inst. Henri Poincaré Probab. Stat., 51, 4, 1342-1368, (2015) · Zbl 1339.60123
[33] Marckert, Jean-François; Miermont, Grégory, The CRT is the scaling limit of unordered binary trees, Random Structures Algorithms, 38, 4, 467-501, (2011) · Zbl 1223.05027
[34] Miermont, Grégory, Tessellations of random maps of arbitrary genus, Ann. Sci. Éc. Norm. Supér. (4), 42, 5, 725-781, (2009) · Zbl 1228.05118
[35] Pitman, James W., One-dimensional Brownian motion and the three-dimensional Bessel process, Adv. Appl. Probab., 7, 511-526, (1975) · Zbl 0332.60055
[36] Villani, Cédric, Optimal transport, old and new, (École d’Été de Probabilités de Saint Flour XXXV-2005, Lecture Notes in Mathematics, vol. 1920, (2008), Springer-Verlag) · Zbl 1156.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.