Simulation of the motion of a five-link crawling robot with controlled friction on a surface having obstacles. (English. Russian original) Zbl 1384.93096

J. Comput. Syst. Sci. Int. 56, No. 3, 527-552 (2017); translation from Izv. Ross. Akad. Nauk, Teor. Sist. Upr. 2017, No. 3, 191-216 (2017).
Summary: We consider the motion of a five-link crawling robot in an environment with obstacles located discretely. The robot is fitted with special controlled friction elements for the periodic fixation of links on the surface and has a possibility of the spatial configuration change due to a detachment of the end links from the surface. One of the possible crawling modes is analyzed as the end links are detached from the surface and the adjacent links rotate by a given angle in the plane of motion without interaction with obstacles. As the result of simulating by the numerical method, we establish the dependence between the average velocity of the plant (and its maneuverability between obstacles) and control values.


93C85 Automated systems (robots, etc.) in control theory
68T40 Artificial intelligence for robotics
93C15 Control/observation systems governed by ordinary differential equations
93A30 Mathematical modelling of systems (MSC2010)
Full Text: DOI


[1] Tanaka, T.; Harigaya, K.; Nakamura, T., Development of a peristaltic crawling robot for long-distance inspection of sewer pipes (2014)
[2] Jatsun, S.; Loktionova, O.; Malchikov, A., Six-link in-pipe crawling robot, 341-348 (2014)
[3] Houssam, A.; Ananiev, A.; Kalaykov, I., Stability study of underwater crawling robot on non-horizontal surface (2014)
[4] E. S. Conkur and R. Gurbuz, “Path planning algorithm for snake-like robots,” Inform. Technol. Control. 37, 159-162 (2008).
[5] D. Lounis, D. Spinello, W. Gueaieb, and H. Sarfraz, “Planar kinematics analysis of a snake-like robot,” Robotica 32, 659-675 (2014). · doi:10.1017/S026357471300091X
[6] W. Wu, X. Jun, Y. H. L. Wei, S. M. Ri, X. C. Chun, Y. H. Zhen, and L. Zhong, “Structure design of climbing snake-like robot for detection of cable-stayed bridge,” Appl. Mech. Mater. 598, 610-618 (2014). · doi:10.4028/www.scientific.net/AMM.598.610
[7] Matsuo, T.; Ishii, K., Adaptative motion control system of a snake-like robot using a neural oscillator netowork (2014)
[8] L. Yan-hui, L. Li, W. Ming-hui, and G. Xian, “Simulation study on serpentine locomotion of underwater snakelike robot,” Int. J. Control Automat. 8, 373-384 (2015).
[9] G. Li, W. Li, J. Zhang, and H. Zhang, “Analysis and design of asymmetric oscillation for caterpillar-like locomotion,” J. Bionic Eng. 12, 190-203 (2015). · doi:10.1016/S1672-6529(14)60112-8
[10] G. Li, H. Zhang, J. Zhang, and R. T. Bye, “Development of adaptive locomotion of a caterpillar-like robot based on a sensory feedback CPG model,” Adv. Robotics 28, 389-401 (2014). · doi:10.1080/01691864.2013.867283
[11] Gorges, S.; Riehs, C.; Zimmermann, K.; Kästner, T., A cascaded worm-like locomotion system-constructive design, software and experimental environment (2014)
[12] Jatsun, S.; Malchikov, A., Mobile worm-like robots for pipe inspection, 168-218 (2014)
[13] F. L. Chernous’ko, “On motion of a three-link mechanism along a horizontal plane,” Prikl. Mat. Mekh. 65, 15-20 (2001). · Zbl 1066.70005
[14] F. L. Chernous’ko, “Controllable motions of a two-link mechanism along a horizontal plane,” J. Appl. Math. Mech. 65, 565-577 (2001). · Zbl 1051.70554 · doi:10.1016/S0021-8928(01)00062-4
[15] Chernous’ko, F. L., Motion of multilink mechanisms along a plane, 783-802 (2003)
[16] F. L. Chernous’ko, “Wave-like motion of multilink mechanism along a horizontal plane,” Prikl. Mat. Mekh. 64, 518-531 (2000). · Zbl 0983.70007
[17] F. L. Chernous’ko, “Motion of flat multilink mechanism along a horizontal plane,” Prikl. Mat. Mekh. 64, 8-18 (2000). · Zbl 0983.70006
[18] F. L. Chernous’ko, “The motion of a flat linkage over a horizontal plane,” Dokl. Phys. 45, 42 (2000). · Zbl 1023.78008 · doi:10.1134/1.171702
[19] F. L. Chernous’ko, “Optimal control of the motion of a multilink system in a resistive medium,” J. Appl. Math. Mech. 76, 255-267 (2012). · Zbl 1272.70132 · doi:10.1016/j.jappmathmech.2012.07.001
[20] F. L. Chernous’ko and M. M. Shunderyuk, “The influence of friction forces on the dynamics of a two-link mobile robot,” J. Appl. Math. Mech. 74, 13-23 (2010). · Zbl 1272.70044 · doi:10.1016/j.jappmathmech.2010.03.003
[21] F. L. Chernous’ko, “Optimal move of a multilink system in a resistive medium,” Tr. IMM UrO RAN 17 (2), 240-255 (2011). · Zbl 1272.70132
[22] F. L. Chernous’ko, “Control of multilink mechanisms motion on rough plane,” Tr. IMM UrO RAN 6 (1), 277-287 (2000).
[23] S. A. Bashkirov, “Motion control algorithms and simulation of the dynamics of multilink robots moving based on the principles of a traveling wave,” J. Comput. Syst. Sci. Int. 46, 162 (2007). · Zbl 1272.93085 · doi:10.1134/S1064230707010182
[24] K. S. Sorokin, “Control of a three-link robot moving on the plane with friction,” J. Comput. Syst. Sci. Int. 48, 489 (2009). · Zbl 1308.93158 · doi:10.1134/S1064230709030150
[25] N. A. Sobolev and K. S. Sorokin, “Experimental investigation of snakelike motions of a three-link mechanism,” J. Comput. Syst. Sci. Int. 45, 841 (2006). · Zbl 1263.93022 · doi:10.1134/S1064230706050157
[26] Jatsun, S. F.; Volkova, L. Yu.; Naumov, G. S.; Yatsun, A. S., Modelling of movement of the three-link robot with operated friction forces on the horizontal surface, 677-684 (2013)
[27] L. Yu. Vorochaeva, G. S. Naumov, and S. F. Yatsun, “Simulation of motion of a three-link robot with controlled friction forces on a horizontal rough surface,” J. Comput. Syst. Sci. Int. 54, 151-164 (2015). · Zbl 1317.93196 · doi:10.1134/S1064230715010128
[28] Yatsun, S. F.; Volkova, L. Yu.; Rublev, S. B.; Naumov, G. S., Three-link creeping robot as a vehicle, 293-294 (2013)
[29] Yatsun, S. F.; Mishchenko, V. Ya.; Naumov, G. S., Creeping mobile robot (2015)
[30] Yatsun, S. F.; Volkova, L. Yu.; Naumov, G. S., Software for calculation of the motion parameters of threelink mechanism during transverse gait (2014)
[31] Yatsun, S. F.; Volkova, L. Yu.; Naumov, G. S., Software for calculation of the motion parameters of threelink mechanism during longitudinal gait (2014)
[32] Jatsun, S. F.; Vorochaeva, L. Yu.; Yatsun, A. S.; Malchikov, A. V., Theoretical and experimental studies of transverse dimensional gait of five-link mobile robot on rough surface, 35 (2015)
[33] Bolotnik, N.; Pivovarov, M.; Zeidis, I.; Zimmermann, K., Dynamics and control of a two-module mobile robot on a rough surface, 141-148 (2014)
[34] M. H. P. Dekker, Zero-Moment Point Method for Stable Biped Walking (Univ. of Technology, Eindhoven, 2009).
[35] M. Vukobratovic and B. Borovac, “Zero—moment point—thirty five years of its life,” Int. J. Humanoid Robotics 1, 157-173 (2004). · doi:10.1142/S0219843604000083
[36] L. Yu. Volkova, I. V. Lupekhina, G. Ya Panovko, and S. F. Yatsun, “Dynamics of the vibration driven tool at its interaction with the processing material,” Mashinostr. Inzhen. Obrazov., No. 4, 63-72 (2010).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.