×

zbMATH — the first resource for mathematics

Dual immaculate quasisymmetric functions expand positively into Young quasisymmetric Schur functions. (English) Zbl 1385.05072
Summary: We describe a combinatorial formula for the coefficients when the dual immaculate quasisymmetric functions are decomposed into Young quasisymmetric Schur functions. We prove this using an analogue of Schensted insertion. Using this result, we give necessary and sufficient conditions for a dual immaculate quasisymmetric function to be symmetric. Moreover, we show that the product of a Schur function and a dual immaculate quasisymmetric function expands positively in the Young quasisymmetric Schur basis. We also discuss the decomposition of the Young noncommutative Schur functions into the immaculate functions. Finally, we provide a Remmel-Whitney-style rule to generate the coefficients of the decomposition of the dual immaculates into the Young quasisymmetric Schurs algorithmically and an analogous rule for the decomposition of the dual bases.

MSC:
05E05 Symmetric functions and generalizations
05E10 Combinatorial aspects of representation theory
14N15 Classical problems, Schubert calculus
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Aguiar, Marcelo; Bergeron, Nantel; Sottile, Frank, Combinatorial Hopf algebras and generalized Dehn-sommerville relations, Compos. Math., 142, 1, 1-30, (2006) · Zbl 1092.05070
[2] Berg, C.; Bergeron, N.; Saliola, F.; Serrano, L.; Zabrocki, M., Multiplicative structures of the immaculate basis of non-commutative symmetric functions, (2013) · Zbl 1294.05154
[3] Berg, Chris; Bergeron, Nantel; Saliola, Franco; Serrano, Luis; Zabrocki, Mike, A lift of the Schur and Hall-Littlewood bases to non-commutative symmetric functions, Canad. J. Math., 66, 3, 525-565, (2014) · Zbl 1291.05206
[4] Berg, Chris; Bergeron, Nantel; Saliola, Franco; Serrano, Luis; Zabrocki, Mike, Indecomposable modules for the dual immaculate basis of quasi-symmetric functions, Proc. Amer. Math. Soc., 143, 3, 991-1000, (2015) · Zbl 1306.05243
[5] Billera, Louis J.; Hsiao, Samuel K.; van Willigenburg, Stephanie, Peak quasisymmetric functions and Eulerian enumeration, Adv. Math., 176, 2, 248-276, (2003) · Zbl 1027.05105
[6] Bergeron, Nantel; Sánchez-Ortega, Juana; Zabrocki, Mike, The Pieri rule for dual immaculate quasi-symmetric functions, Ann. Comb., 20, 2, 283-300, (2016) · Zbl 1344.05146
[7] Cauchy, A. L., Mémoire sur LES fonctions qui ne peuvent obtenir que deux valeurs égales et de signes contraires par suite des transpositions opérés entre LES variables qu’elles renferment, J. Éc. Polytech., 10, 29-112, (1815)
[8] Campbell, John; Feldman, Karen; Light, Jennifer; Shuldiner, Pavel; Xu, Yan, A Schur-like basis of nsym defined by a Pieri rule, Electron. J. Combin., 21, 3, 19, (2014), Paper 3.41 · Zbl 1301.05357
[9] Chevalley, Claude, Invariants of finite groups generated by reflections, Amer. J. Math., 77, 778-782, (1955) · Zbl 0065.26103
[10] Ehrenborg, R., On posets and Hopf algebras, Adv. Math., 119, 1, 1-25, (1996) · Zbl 0851.16033
[11] Fulton, William, Young tableaux, London Mathematical Society Student Texts, vol. 35, (1997), Cambridge University Press Cambridge, with applications to representation theory and geometry · Zbl 0878.14034
[12] Geissinger, Ladnor, Hopf algebras of symmetric functions and class functions, (Combinatoire et représentation du groupe symétrique, Actes Table Ronde C.N.R.S. Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976, Lecture Notes in Math., vol. 579, (1977), Springer Berlin), 168-181 · Zbl 0329.15009
[13] Gessel, I. M., Multipartite p-partitions and inner products of skew Schur functions, Contemp. Math., 34, 289-301, (1984) · Zbl 0562.05007
[14] Gelfand, Israel M.; Krob, Daniel; Lascoux, Alain; Leclerc, Bernard; Retakh, Vladimir S.; Thibon, Jean-Yves, Noncommutative symmetric functions, Adv. Math., 112, 2, 218-348, (1995) · Zbl 0831.05063
[15] Gessel, Ira M.; Reutenauer, Christophe, Counting permutations with given cycle structure and descent set, J. Combin. Theory Ser. A, 64, 2, 189-215, (1993) · Zbl 0793.05004
[16] Garsia, A.; Remmel, Jeffrey B., Breakthroughs in the theory of Macdonald polynomials, Proc. Natl. Acad. Sci. USA, 102, 11, 3891-3894, (2005), (electronic) · Zbl 1208.05148
[17] Haglund, J., A combinatorial model for the Macdonald polynomials, Proc. Natl. Acad. Sci. USA, 101, 46, (2004) · Zbl 1064.05147
[18] Haglund, J., The genesis of the Macdonald polynomial statistics, Sém. Lothar. Combin., 54, (2006), B54Ao
[19] Hersh, Patricia; Hsiao, Samuel K., Random walks on quasisymmetric functions, Adv. Math., 222, 3, 782-808, (2009) · Zbl 1229.05271
[20] Haglund, J.; Haiman, M.; Loehr, N., A combinatorial formula for nonsymmetric Macdonald polynomials, Amer. J. Math., 130, 2, 359-383, (2008) · Zbl 1246.05162
[21] Hivert, Florent, Hecke algebras, difference operators, and quasi-symmetric functions, Adv. Math., 155, 2, 181-238, (2000) · Zbl 0990.05129
[22] Haglund, J.; Luoto, K.; Mason, S.; van Willigenburg, S., Quasisymmetric Schur functions, J. Combin. Theory Ser. A, 118, 2, 463-490, (2011) · Zbl 1229.05270
[23] Haglund, J.; Luoto, K.; Mason, S.; van Willigenburg, S., Refinements of the Littlewood-Richardson rule, Trans. Amer. Math. Soc., 363, 3, 1665-1686, (2011) · Zbl 1229.05269
[24] Krob, Daniel; Thibon, Jean-Yves, Noncommutative symmetric functions. IV. quantum linear groups and Hecke algebras at \(q = 0\), J. Algebraic Combin., 6, 4, 339-376, (1997) · Zbl 0881.05120
[25] Krob, Daniel; Thibon, Jean-Yves, Noncommutative symmetric functions. V. A degenerate version of \(U_q(\operatorname{gl}_N)\), Internat. J. Algebra Comput., 9, 3-4, 405-430, (1999), dedicated to the memory of Marcel-Paul Schützenberger · Zbl 1040.17010
[26] Kwon, Jae-Hoon, Crystal graphs for general linear Lie superalgebras and quasi-symmetric functions, J. Combin. Theory Ser. A, 116, 7, 1199-1218, (2009) · Zbl 1232.17013
[27] Luoto, Kurt; Mykytiuk, Stefan; van Willigenburg, Stephanie, An introduction to quasisymmetric Schur functionshopf algebras, quasisymmetric functions, and Young composition tableaux, Springer Briefs in Mathematics, (2013), Springer New York · Zbl 1277.16027
[28] Macdonald, I. G., A new class of symmetric functions, Sém. Lothar. Combin., 20, (1988) · Zbl 0962.05507
[29] Macdonald, I. G., Symmetric functions and Hall polynomials, Oxford Classic Texts in the Physical Sciences, (2015), The Clarendon Press, Oxford University Press New York, with contribution by A.V. Zelevinsky and a foreword by Richard Stanley, Reprint of the 2008 paperback edition · Zbl 1332.05002
[30] Malvenuto, C., Produits et coproduits des fonctions quasi-symétriques et de l’alg‘ebre des descentes, (1994), Laboratoire de Combinatoire et d’Informatique Mathématique UQAM, PhD thesis
[31] Marshall, D., Symmetric and nonsymmetric Macdonald polynomials, Ann. Comb., 3, 2, 385-415, (1999) · Zbl 0942.33012
[32] Malvenuto, C.; Reutenauer, C., Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra, 177, 3, 967-982, (1995) · Zbl 0838.05100
[33] Mason, S.; Remmel, J., Row-strict quasisymmetric Schur functions, Ann. Comb., 18, 1, 127-148, (2014) · Zbl 1297.05241
[34] Remmel, J. B.; Whitney, R., Multiplying Schur functions, J. Algorithms, 5, 4, 471-487, (1984) · Zbl 0557.20008
[35] Sagan, Bruce E., The symmetric grouprepresentations, combinatorial algorithms, and symmetric functions, Graduate Texts in Mathematics, vol. 203, (2001), Springer-Verlag New York · Zbl 0964.05070
[36] Schur, I., Über eine klasse von matrizen, die sich einer gegeben matrix zuorden lassen, (1973), PhD thesis
[37] Shephard, G. C.; Todd, J. A., Finite unitary reflection groups, Canad. J. Math., 6, 274-304, (1954) · Zbl 0055.14305
[38] Stanley, Richard P., Ordered structures and partitions, Memoirs of the American Mathematical Society, vol. 119, (1972), pages iii+104 · Zbl 0246.05007
[39] Stanley, Richard P., Some combinatorial aspects of the Schubert calculus, (Combinatoire et représentation du groupe symétrique, Actes Table Ronde CNRS, Univ. Louis-Pasteur Strasbourg, Strasbourg, 1976, Lecture Notes in Math., vol. 579, (1977), Springer Berlin), 217-251
[40] Stanley, Richard P., On the number of reduced decompositions of elements of Coxeter groups, European J. Combin., 5, 4, 359-372, (1984) · Zbl 0587.20002
[41] Stanley, Richard P., Enumerative combinatorics, vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, (1999), Cambridge University Press Cambridge, with a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin · Zbl 0928.05001
[42] Stanley, Richard P., Generalized riffle shuffles and quasisymmetric functions, Ann. Comb., 5, 3-4, 479-491, (2001), dedicated to the memory of Gian-Carlo Rota (Tianjin, 1999) · Zbl 1010.05078
[43] van Willigenburg, Stephanie, Noncommutative irreducible characters of the symmetric group and noncommutative Schur functions, J. Comb., 4, 4, 403-418, (2013) · Zbl 1290.05155
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.