×

Regulator of modular units and Mahler measures. (English) Zbl 1386.11129

Summary: We present a proof of the formula, due to Mellit and Brunault, which evaluates an integral of the regulator of two modular units to the value of the \(L\)-series of a modular form of weight 2 at \(s=2\). Applications of the formula to computing Mahler measures are discussed.

MSC:

11R06 PV-numbers and generalizations; other special algebraic numbers; Mahler measure
11F11 Holomorphic modular forms of integral weight
11M36 Selberg zeta functions and regularized determinants; applications to spectral theory, Dirichlet series, Eisenstein series, etc. (explicit formulas)
11R27 Units and factorization

Software:

SageMath; PARI/GP
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] DOI: 10.1090/S0894-0347-97-00228-2 · Zbl 0913.11027
[2] DOI: 10.1142/S1793042110003174 · Zbl 1201.11098
[3] DOI: 10.2307/1970966 · Zbl 0354.14007
[4] DOI: 10.1007/978-1-4614-6642-0_20 · Zbl 1316.11038
[5] DOI: 10.4064/aa134-3-7 · Zbl 1195.11083
[6] DOI: 10.1112/S0024609304003510 · Zbl 1064.11037
[7] DOI: 10.2140/ant.2007.1.87 · Zbl 1172.11037
[8] DOI: 10.1080/10586458.1998.10504357 · Zbl 0932.11069
[9] Bertin, J. Reine Angew. Math. 569 pp 175– (2004)
[10] DOI: 10.1112/S0010437X11007342 · Zbl 1260.11062
[11] DOI: 10.1353/ajm.2005.0037 · Zbl 1127.11041
[12] Rodriguez Villegas, Topics in Number Theory pp 17– (1997)
[13] Mellit, Explicit Methods in Number Theory pp 1990– (2011)
[14] DOI: 10.1007/978-3-642-65663-7
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.