zbMATH — the first resource for mathematics

An inverse source problem for a two parameter anomalous diffusion equation with nonlocal boundary conditions. (English) Zbl 1386.35479
Summary: We consider the inverse problem of determination of the solution and a source term for a time fractional diffusion equation in two dimensional space. The time fractional derivative is the Hilfer derivative. A bi-orthogonal system of functions in \(L^2(\Omega)\), obtained from the associated non-self-adjoint spectral problem and its adjoint problem, is used to prove the existence and uniqueness of the solution of the inverse problem. The stability of the solution of the inverse problem on the given data is proved.

35R30 Inverse problems for PDEs
35R11 Fractional partial differential equations
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] Hilfer, R., Applications of fractional calculus in physics, (2000), World Scientific · Zbl 0998.26002
[2] Ionkin, N. I.; Morozova, V. A., The two-dimensional heat equation with nonlocal boundary conditions, Differential Equations, 36, 94-96, (2000) · Zbl 0979.35059
[3] Kirane, M.; Malik, S. A.; Al-Gwaiz, M. A., An inverse source problem for a two dimensional time fractional diffusion equation with nonlocal boundary conditions, Math. Methods Appl. Sci., 36, 1056-1069, (2013) · Zbl 1267.80013
[4] Furati, K. M.; Iyiola, O. S.; Kirane, M., An inverse problem for a generalised fractional diffusion, Appl. Math. Comput., 249, 24-31, (2014) · Zbl 1338.35493
[5] Tarasov, V. E., Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media, (2010), Springer-Verlag · Zbl 1214.81004
[6] Mainardi, F., Fractional calculus and waves in linear viscoelasticity, fields and media, (2010), Imperial Collage Press
[7] Baleanu, D.; Guvenc, Z. B.; Machado, J. A.T., New trends in nanotechnology and fractional calculus applications, (2009), Imperial Collage Press
[8] Gonzalez-Parra, G.; Arenas, A. J.; Charpentier, B. M.C., A fractional order epidemic model for the simulation of outbreak of influenza A(H1N1), Math. Methods Appl. Sci., 37, 2218-2226, (2014) · Zbl 1300.92099
[9] Hilfer, R., On fractional diffusion and its relation with continuous time random walks, (Pekalski, A.; Sznajd-Weron, K., Anomalous Diffusion From Basics to Applications, 1998 Proceedings of the XIth Max Born Symposium held at Ladek Zdroj, (1999), Springer Poland) · Zbl 1029.60033
[10] Machado, J. A.T.; Lopes, A. M., Relative fractional dynamics of stock markets, Nonlinear Dynam., 86, (2016)
[11] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J., (Theory and Application of Fractional Differential Equations, Mathematics Studies, vol. 204, (2006), Elsevier Amsterdam) · Zbl 1092.45003
[12] Sierociuk, D.; Skovranek, T.; Macias, M.; Podlubny, I.; Petras, I.; Dzielinski, A.; Ziubinski, P., Diffusion process modeling by using fractional-order models, Appl. Math. Comput., (2014)
[13] Mainardi, F.; Gorenflo, R., Time-fractional derivatives in relaxation processes: A tutorial survey, Fract. Calc. Appl. Anal., 10, 269-308, (2007) · Zbl 1157.26304
[14] Hatano, Y.; Hatano, N., Dispersive transport of ions in column experiments: an explanation of long tailed profiles, Water Resour. Res., 34, 1027-1033, (1998)
[15] Itto, Y., Heterogeneous anomalous diffusion in view of superstatistics, Phys. Lett. A, 378, 3037-3040, (2014) · Zbl 1298.82035
[16] Klages, R.; Radons, G.; Sokolov, I. M., Anomalous transport, (2008), Wiley Verlag GmbH & Co. KGaA Weinheim
[17] Bird, R. B.; Klingenberg, D. J., Multicomponent diffusion- A brief review, Adv. Water Resour., 62, 238-242, (2013)
[18] Hilfer, R., On fractional relaxation, Fractals, 11, 251-257, (2003) · Zbl 1140.82315
[19] Hilfer, R., Classification theory for an equilibrium phase transitions, Phys. Rev. E, 48, 2466-2475, (1993)
[20] Hilfer, R., Fractional dynamics, irreversibility and ergodicity breaking, Chaos Solitons Fractals, 5, 1475-1484, (1995) · Zbl 0907.58039
[21] Hilfer, R., Exact solutions for a class of fractal time random walks, Fractals, 3, 211-216, (1995) · Zbl 0881.60066
[22] Lukashchuk, S. Y., Conservation laws for time-fractional subdiffusion and diffusion-wave equations, Nonlinear Dynam., 80, 791-802, (2015) · Zbl 1345.35131
[23] Glushak, V. A.; Manaenkova, T. A., Direct and inverse problems for an abstract differential equation containing Hadamard fractional derivatives, Differential Equations, 47, 1307-1317, (2011) · Zbl 1273.34067
[24] Glushak, A. V., On an inverse problem for an abstract differential equation of fractional order, Math. Notes, 87, 654-662, (2010) · Zbl 1280.34014
[25] Tatar, S.; Ulusoy, S., An inverse problem for a nonlinear diffusion equation with time-fractional derivative, J. Inverse Ill-Posed Probl., (2016)
[26] Wei, T.; Sun, L.; Li, Y., Uniqueness for an inverse space-dependent source term in a multi-dimensional time-fractional diffusion equation, Appl. Math. Lett., 61, 108-113, (2016) · Zbl 1386.35481
[27] Tatar, S.; Tinaztepe, R.; Ulusoy, S., Determination of an unknown source term in a space-time fractional diffusion equation, J. Fract. Calc. Appl., 6, 83-90, (2015)
[28] Wei, S.; Chen, W.; Hon, Y. C., Characterizing time dependent anomalous diffusion process: A survey on fractional derivative and nonlinear models, Physica A, 462, 1244-1251, (2016) · Zbl 1400.65047
[29] Wei, H.; Chen, W.; Sun, H.; Li, X., A coupled method for inverse source problem of spatial fractional anomalous diffusion equations, Inverse Probl. Sci. Eng.; Formerly Inverse Probl. Eng., 18, 7, 945-956, (2010) · Zbl 1204.65116
[30] Liu, C. S.; Chen, W.; Fu, Z., A multiple-scale MQ-RBF for solving the inverse Cauchy problems in arbitrary plane domain, Eng. Anal. Bound. Elem., 68, 11-16, (2016) · Zbl 1403.65116
[31] Tuan, N. H.; Kirane, M.; Hoan, L. V.C.; Long, L. D., Identification and regularization for unknown source for a time-fractional diffusion equation, Comput. Math. Appl., (2016)
[32] Ali, M.; Malik, S. A., An inverse problem for a family of time fractional diffusion equations, Inverse Probl. Sci. Eng., (2016)
[33] Jin, B.; Rundell, W., A tutorial on inverse problems for anomalous diffusion processes, Inverse Problems, (2015) · Zbl 1323.34027
[34] Hilfer, R., Experimental evidence for fractional time evolution in Glass forming materials, Chem. Phys., 284, 399-408, (2002)
[35] Srivastava, H. M.; Tomovski, Z., Fractional calculus with an integral operator containing a generalized Mittag Leffler function in the kernel, Appl. Math. Comput., 211, 198-210, (2009) · Zbl 1432.30022
[36] Furati, K. M.; Kassim, M. D.; Tatar, N.e-, Existence and uniqueness for a problem involving hilfer fractional derivative, Comput. Math. Appl., 64, 1616-1626, (2012) · Zbl 1268.34013
[37] Gorenflo, R.; Kilbas, A. A.; Mainardi, F.; Rogosin, S. V., Mittag-Leffler functions, related topics and application, (2014), Springer · Zbl 1309.33001
[38] Schilling, R. L.; Song, R.; Vondracek, Z., Bernstein functions theory and applications, (2011), De Gruyter
[39] Prabhakar, T. R., A singular integral equation with a generalised Mittag-Leffler functions in the kernel, Yokohama Math. J., 19, 7-15, (1971) · Zbl 0221.45003
[40] Haubold, H. J.; Mathai, A. M.; Saxena, R. K., Mittag-Leffler functions and their application, J. Appl. Math., 51, (2011), Article ID 298628 · Zbl 1218.33021
[41] Podlubny, I., (Fractional Differential Equations, Mathematics in Science and Engineering, vol. 198, (1999), Acad. Press) · Zbl 0918.34010
[42] Samko, G. S.; Kilbas, A. A.; Marichev, D. I., Fractional integrals and derivatives: theory and applications, (1993), Gordon and Breach Science Publishers · Zbl 0818.26003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.