×

zbMATH — the first resource for mathematics

Algebraic properties of generalized graph Laplacians: resistor networks, critical groups, and homological algebra. (English) Zbl 1387.05153
MSC:
05C50 Graphs and linear algebra (matrices, eigenvalues, etc.)
05C76 Graph operations (line graphs, products, etc.)
18G15 Ext and Tor, generalizations, Künneth formula (category-theoretic aspects)
39A12 Discrete version of topics in analysis
94C05 Analytic circuit theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] J. Alman, C. Lian, and B. Tran, Circular planar electrical networks: Posets and positivity, J. Combin. Theory Ser. A, 132 (2015), pp. 58–101. · Zbl 1307.05055
[2] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Westview Press, Boulder, CO, 1969. · Zbl 0175.03601
[3] H. Bai, On the critical group of the n-cube, Linear Algebra Appl., 369 (2003), pp. 251–261, . · Zbl 1023.05096
[4] M. Baker and X. Faber, Metric properties of the tropical Abel–Jacobi map, J. Algebraic Combin., 33 (2011), pp. 349–381, . · Zbl 1215.14060
[5] M. Baker and S. Norine, Riemann–Roch and Abel–Jacobi theory on a finite graph, Adv. Math., 215 (2007), pp. 766–788, . · Zbl 1124.05049
[6] M. Baker and S. Norine, Harmonic morphisms and hyperelliptic graphs, Int. Math. Res. Not. IMRN, 2009 (2009), pp. 2914–2955, . · Zbl 1178.05031
[7] K. A. Berman, Bicycles and spanning trees, SIAM J. Algebraic Discrete Methods, 7 (1986), pp. 1–12, . · Zbl 0588.05016
[8] N. L. Biggs, Algebraic potential theory on graphs, Bull. Lond. Math. Soc., 29 (1997), pp. 641–682.
[9] N. L. Biggs, Chip-firing and the critical group of a graph, J. Algebraic Combin., 9 (1999), pp. 25–45. · Zbl 0919.05027
[10] A. Björner, L. Lovász, and P. W. Shor, Chip-firing games on graphs, European J. Combin., 12 (1991), pp. 283–291.
[11] A. I. Bobenko and F. Günther, Discrete complex analysis on planar quad-graphs, in Advances in Discrete Differential Geometry, A. I. Bobenko, ed., Springer, Berlin, 2016, pp. 57–132, . · Zbl 1353.30046
[12] H. Christianson and V. Reiner, The critical group of a threshold graph, Linear Alg. Appl., 349 (2002), pp. 233–244. · Zbl 1006.05029
[13] Y. Colin de Verdiere, I. Gitler, and D. Vertigan, Reseaux électriques planaires II, Comment. Math. Helv., 71 (1996), pp. 144–167. · Zbl 0853.05074
[14] R. Cori and D. Rossin, On the sandpile group of dual graphs, European J. Combin., 21 (2000), pp. 447–459, . · Zbl 0969.05034
[15] E. B. Curtis, D. Ingerman, and J. A. Morrow, Circular planar graphs and resistor networks, Linear Algebra Appl., 283 (1998), pp. 115–150, . · Zbl 0931.05051
[16] E. B. Curtis, E. Mooers, and J. A. Morrow, Finding the conductors in circular networks from boundary measurements, Math. Model. Numer. Anal., 28 (1994), pp. 781–814, . · Zbl 0820.94028
[17] E. B. Curtis and J. A. Morrow, The Dirichlet to Neumann map for a resistor network, SIAM J. Appl. Math., 51 (1991), pp. 1011–1029, . · Zbl 0744.35064
[18] E. B. Curtis and J. A. Morrow, Inverse Problems for Electrical Networks, World Scientific, River Edge, NJ, 2000. · Zbl 1056.94022
[19] D. Dhar, Self-organized critical state of sandpile automaton models, Phys. Rev. Lett., 64 (1990), pp. 1613–1616, . · Zbl 0943.82553
[20] D. S. Dummit and R. M. Foote, Abstract Algebra, John Wiley and Sons, New York, 2004. · Zbl 1037.00003
[21] A. M. Duval, C. J. Klivans, and J. L. Martin, Critical groups of simplicial complexes, Ann. Comb., 17 (2013), pp. 53–70, . · Zbl 1263.05124
[22] R. Forman, Determinants of Laplacians on graphs, Topology, 32 (1993), pp. 35–46, . · Zbl 0780.05041
[23] C. Godsil and G. Royle, Algebraic Graph Theory, Springer, New York, 2001. · Zbl 0968.05002
[24] A. E. Holroyd, L. Levine, K. Mészáros, Y. Peres, J. Propp, and D. B. Wilson, Chip-firing and rotor-routing on directed graphs, in In and Out of Equilibrium 2, V. Sidoravicius and M. E. Vares, eds., Birkhäuser, Basel, 2008, pp. 331–364, . · Zbl 1173.82339
[25] D. Ingerman and J. Morrow, private communication, 2015.
[26] D. Jekel, Layering \(∂\)-Graphs and Networks: \(∂\)-Graph Transformations, Discrete Harmonic Continuation, and a Generalized Electrical Inverse Problem, , 2016.
[27] W. Johnson, Circular Planar Resistor Networks with Nonlinear and Signed Conductors, , 2012.
[28] R. Kenyon, The Laplacian on planar graphs and graphs on surfaces, Current Developments in Mathematics, (2011), . · Zbl 1316.05087
[29] T. Lam and P. Pylyavskyy, Inverse problem in cylindrical electrical networks, SIAM J. Appl. Math., 72 (2012), pp. 767–788, . · Zbl 1250.94072
[30] T. Lam and P. Pylyavskyy, Electrical networks and LIE theory, Algebra Number Theory, 9 (2015), pp. 1401–1418. · Zbl 1325.05181
[31] T.-Y. Lam, A First Course in Noncommutative Rings, Grad. Texts in Math. 131, Springer, New York, 2013, .
[32] L. Levine, The sandpile group of a tree, European J. Combin., 30 (2009), pp. 1026–1035, . · Zbl 1221.05052
[33] D. J. Lorenzini, Arithmetical graphs, Math. Ann., 285 (1989), pp. 481–501. · Zbl 0662.14008
[34] D. J. Lorenzini, A finite group attached to the Laplacian of a graph, Discrete Math., 91 (1991), pp. 277–282, . · Zbl 0755.05079
[35] S. MacLane, Homology, Springer, New York, 1975.
[36] C. Mercat, Discrete Riemann surfaces, Comm. Math. Phys., 218 (2001), pp. 77–216. · Zbl 1043.82005
[37] K. Perry, Discrete Complex Analysis, Unpublished paper, University of Washington Math REU, 2003, .
[38] N. Reichert, The Smallest Recoverable Flower, Unpublished paper, University of Washington Math REU, 2004, .
[39] R. Solomyak, On the coincidence of entropies for two types of dynamical systems, Ergodic Theory Dynam. Systems, 18 (1998), pp. 731–738. · Zbl 0924.58047
[40] J. Spencer, Balancing vectors in the max norm, Combinatorica, 6 (1986), pp. 55–65, . · Zbl 0593.90110
[41] D. Treumann, Functoriality of Critical Groups, Undergraduate thesis, University of Minnesota, 2002, .
[42] H. Urakawa, A discrete analogue of the harmonic morphism and Green kernel comparison theorems, Glasg. Math. J., 42 (2000), pp. 319–334. · Zbl 1002.05049
[43] L. R. Vermani, An Elementary Approach to Homological Algebra, CRC Press, Boca Raton, FL, 2003. · Zbl 1045.16005
[44] C. A. Weibel, An Introduction to Homological Algebra, Cambridge University Press, Cambridge, UK, 1995.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.