×

zbMATH — the first resource for mathematics

Webs and quantum skew Howe duality. (English) Zbl 1387.17027
Summary: We give a diagrammatic presentation in terms of generators and relations of the representation category of \(U_q(\mathfrak{sl}_n)\). More precisely, we produce all the relations among \(\mathrm{SL}_n\)-webs, thus describing the full subcategory \(\otimes\)-generated by fundamental representations \(\bigwedge^k\mathbb C^n\) (this subcategory can be idempotent completed to recover the entire representation category). Our result answers a question posed by G. Kuperberg] in [Commun. Math. Phys. 180, No. 1, 109–151 (1996; Zbl 0870.17005)] and affirms conjectures of Dongseok Kim in [Graphical calculus on representations of quantum lie algebras, Ph. D. thesis, University of California, Davis (2003), arxiv:math/0310143] and Scott Morrison in [A diagrammatic category for the representation theory of \(U_q(\mathfrak{sl}_n)\). PhD thesis, University of California, Berkeley (2007), arxiv:0704.1503]. Our main tool is an application of quantum skew Howe duality. This is the published version of arxiv:1210.6437.

MSC:
17B37 Quantum groups (quantized enveloping algebras) and related deformations
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B20 Simple, semisimple, reductive (super)algebras
Citations:
Zbl 0870.17005
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Berenstein, A; Zwicknagl, S, Braided symmetric and exterior algebras, Trans. Am. Math. Soc., 360, 3429-3472, (2008) · Zbl 1220.17004
[2] Cautis, S; Kamnitzer, J, Categorical geometric skew Howe duality, Invent. Math., 180, 111-159, (2010) · Zbl 1254.17013
[3] Chuang, J., Rouquier, R.: Derived equivalences for symmetric groups and \({\mathfrak{sl}}_2\)-categorification. Ann. Math. (2) 167(1), 245-298 (2008). doi:10.4007/annals.2008.167.245. (arXiv:math/0407205) · Zbl 1144.20001
[4] Doty, S.: Presenting generalized \(q\)-Schur algebras. Represent. Theory 7, 196-213 (electronic) (2003). doi:10.1090/S1088-4165-03-00176-6. (arXiv:math/0305208) · Zbl 1030.17011
[5] Grant, J.: The moduli problem of Lobb and Zentner and the coloured sl(n) graph invariant (2012) (arXiv:1212.4511) · Zbl 1281.57004
[6] Howe, R, Remarks on classical invariant theory, Trans. Am. Math. Soc., 313, 539-570, (1989) · Zbl 0674.15021
[7] Howe, R.: Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond. In: The Schur lectures (1992) (Tel Aviv), volume 8 of Israel Math. Conf. Proc. pp. 1-182. Bar-Ilan Univ., Ramat Gan (1995) · Zbl 0844.20027
[8] Jeong, M-J; Kim, D, The quantum \({\mathfrak{sl}}(n,{\mathbb{C}})\) representation theory and its applications, J. Korean Math. Soc., 49, 993-1015, (2012) · Zbl 1319.57005
[9] Khovanov, M, Sl(3) link homology, Algebr. Geom. Topol., 4, 1045-1081, (2004) · Zbl 1159.57300
[10] Kim, D.: Graphical calculus on representations of quantum lie algebras, Ph. D. thesis, University of California, Davis (2003) (arXiv:math.QA/0310143) · Zbl 1202.57017
[11] Khovanov, M; Lauda, AD, A categorification of quantum \({\text{ sl }}(n)\), Quantum Topol., 1, 1-92, (2010) · Zbl 1206.17015
[12] Kuperberg, G.: Spiders for rank 2 Lie algebras. Comm. Math. Phys. 180(1), 109-151 (1996). arXiv:q-alg/9712003. http://projecteuclid.org/euclid.cmp/euclid.cmp/1104287237 · Zbl 0870.17005
[13] Lauda, A., Rose, D., Queffelec, H.: Khovanov homology is a skew Howe 2-representation of categorified quantum \({\mathfrak{sl}}_m\). (arXiv:1212.6076) · Zbl 1330.81128
[14] Lusztig, G.: Introduction to quantum groups. In: Progress in Mathematics, vol. 110. Birkhäuser Boston Inc., Boston (1993). doi:10.1007/978-0-8176-4717-9 · Zbl 0788.17010
[15] Morrison, S.: A Diagrammatic Category for the Representation Theory of \(U_q\left({\mathfrak{sl}}_n\right)\). PhD thesis, University of California, Berkeley (2007) (arXiv:0704.1503) · Zbl 1319.57005
[16] Murakami, H., Ohtsuki, T., Yamada, S.: Homfly polynomial via an invariant of colored plane graphs. Enseign. Math (2) 44(3-4), 325-360 (1998) · Zbl 0958.57014
[17] Morrison, S; Peters, E; Snyder, N, Knot polynomial identities and quantum group coincidences, Quantum Topol., 2, 101-156, (2011) · Zbl 1239.57031
[18] Mackaay, M., Pan, W., Tubbenhauer, D.: The \({\mathfrak{sl}}_3\) web algebra (2012) (arXiv:1206.2118) · Zbl 1321.17010
[19] Mackaay, M; Stošić, M; Vaz, P, \({\mathfrak{sl}}(N)\)-link homology \((N \ge 4)\) using foams and the kapustin-Li formula, Geom. Topol., 13, 1075-1128, (2009) · Zbl 1202.57017
[20] Rouquier, R.: 2-Kac-Moody algebras (2008) (arXiv:0812.5023) · Zbl 1016.17010
[21] Sikora, A.S.: Skein theory for SU(\(n\))-quantum invariants. Algebr. Geom. Topol. 5, 865-897 (electronic) (2005). doi:10.2140/agt.2005.5.865. arXiv:math.QA/0407299 · Zbl 1087.57008
[22] Laredo, VT, A kohno-Drinfeld theorem for quantum Weyl groups, Duke Math. J., 112, 421-451, (2002) · Zbl 1016.17010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.