×

zbMATH — the first resource for mathematics

Remark on the eigenvalues of the \(m\)-Laplacian in a punctured domain. (English) Zbl 1388.31006
Summary: In this paper, we prove some identities for the eigenvalues of the \(m\)-Laplacian in a punctured domain. Also, we discuss possible techniques to investigate spectral properties of the operators in punctured domains.
MSC:
31A30 Biharmonic, polyharmonic functions and equations, Poisson’s equation in two dimensions
35P99 Spectral theory and eigenvalue problems for partial differential equations
47A75 Eigenvalue problems for linear operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Albeverio, S., Fenstad, J.F., Hoegh-Krohn, R.J., Lindstrom, T.L.: Nonstandard Methods in Stochastic Analysis and Mathematical Physics. Mir, Moscow (1980). (Russian translation) · Zbl 1191.60002
[2] Carleman, T.: Berichte der Sachsisch. Akad. der Wiss. zu Leipzig, Math. Phys. Klasse. LXXXVIII, 119 (1936) · Zbl 0968.34072
[3] Delgado, J., Ruzhansky, M.: Fourier multipliers, symbols and nuclearity on compact manifolds. To appear in J. Anal. Math. https://arxiv.org/abs/1404.6479 · Zbl 1296.47019
[4] Delgado, J; Ruzhansky, M; Tokmagambetov, N, Schatten classes, nuclearity and nonharmonic analysis on compact manifolds with boundary, J. Math. Pures Appl., (2016) · Zbl 1366.58009
[5] Grinberg, SI, No article title, Russ. Math. Surv., 58, 97, (1953)
[6] Gohberg, I.C., Krein, M.G.: Introduction to the theory of linear non-self-adjoint operator. American Mathematical Society (1969) · Zbl 0181.13504
[7] Golovaty, YD; Man’ko, SS, Solvable models for the Schrödinger operators with \(δ \)-like potentials, Ukrain. Math. Bull., 6, 169-203, (2009)
[8] Goloshchapova, NI; Zastavnyi, VP; Malamud, MM, Positive definite functions and spectral properties of the Schrödinger operator with point interactions, Math. Notes, 90, 149-154, (2011) · Zbl 1244.47040
[9] Kanguzhin, BE; Aniyarov, AA, No article title, Mathe. Notes, 89, 819-829, (2011) · Zbl 1244.35031
[10] Kanguzhin, BE; Nurakhmetov, DB; Tokmagambetov, NE, Laplace operator with \(δ \)-like potentials, Russ. Math. (Iz. VUZ), 58, 6-12, (2014) · Zbl 1304.35236
[11] Kanguzhin, B; Nalzhupbayeva, G, On identities for eigenvalues of a well-posed perturbation of the Laplace operator in a punctured domain, AIP Conf. Proc., 1759, 020092, (2016)
[12] Kostenko, AS; Malamud, MM, 1D schrodinger operators with local point interactions on a discrete set, J. Differ. Equ., 249, 253-304, (2010) · Zbl 1195.47031
[13] Kanguzhin, B., Ruzhansky, M., Tokmagambetov, N.: On convolutions in Hilbert spaces. Funct. Anal. Appl. (to appear) · Zbl 1392.46027
[14] Kanguzhin, BE; Tokmagambetov, NE, On regularized trace formulas for a well-posed perturbation of the \(m\)-Laplace operator, Differ. Equ., 51, 1583-1588, (2015) · Zbl 1341.35016
[15] Kanguzhin, BE; Tokmagambetov, NE, A regularized trace formula for a well-perturbed Laplace operator, Dokl. Math., 91, 1-4, (2015) · Zbl 1325.35015
[16] Kanguzhin, BE; Tokmagambetov, NE, Resolvents of well-posed problems for finite-rank perturbations of the polyharmonic operator in a punctured domain, Sib. Math. J., 57, 265-273, (2016) · Zbl 1346.35051
[17] Kanguzhin, B; Tokmagambetov, N; Tulenov, K, Pseudo-differential operators generated by a non-local boundary value problem, Complex Var. Elliptic Equ., 60, 107-117, (2015) · Zbl 1312.47058
[18] Pavlov, BS, The theory of extensions and explicitly-soluble models, Russ. Math. Surv., 42, 127-168, (1987) · Zbl 0665.47004
[19] Ruzhansky, M., Turunen, V.: On the Fourier analysis of operators on the torus. In: Toft, J. (ed.) Modern Trends in Pseudo-differential Operators, Operator Theory: Advances and Applications, vol. 172, pp. 87-105. Birkhäuser, Basel (2007) · Zbl 1160.35044
[20] Ruzhansky, M; Turunen, V, On the toroidal quantization of periodic pseudo-differential operators, Numer. Funct. Anal. Optim., 30, 1098-1124, (2009) · Zbl 1193.35262
[21] Ruzhansky, M., Turunen, V.: Pseudo-differential Operators and Symmetries. Background Analysis and Advanced Topics, Pseudo-Differential Operators, Theory and Applications, vol. 2. Birkhäuser Verlag, Basel (2010) · Zbl 1193.35261
[22] Ruzhansky, M; Turunen, V, Quantization of pseudo-differential operators on the torus, J. Fourier Anal. Appl., 16, 943-982, (2010) · Zbl 1252.58013
[23] Ruzhansky, M; Tokmagambetov, N, Nonharmonic analysis of boundary value problems, Int. Math. Res. Not. IMRN, 2016, 3548-3615, (2016) · Zbl 1408.35240
[24] Ruzhansky, M; Tokmagambetov, N, Very weak solutions of wave equation for Landau Hamiltonian with irregular electromagnetic field, Lett. Math. Phys., 107, 591-618, (2017) · Zbl 1372.35177
[25] Ruzhansky, M; Tokmagambetov, N, Nonharmonic analysis of boundary value problems without WZ condition, Math. Model. Nat. Phenom., 12, 115-140, (2017) · Zbl 1385.58013
[26] Ruzhansky, M., Tokmagambetov, N.: Convolution, Fourier analysis, and Distributions Generated by Riesz bases. https://arxiv.org/abs/1611.03791 · Zbl 1398.42003
[27] Savchuk, AM; Shkalikov, AA, Sturm-Liouville operators with distribution potentials, Mosc. Math. Soc., 64, 143-192, (2003) · Zbl 1066.34085
[28] Savchuk, AM; Shkalikov, AA, Sturm-Liouville operators with singular potentials, Math. Notes, 66, 741-753, (1999) · Zbl 0968.34072
[29] Zubok, D.A., Popov, I.: Two physical applications of the Laplace operator perturbed on a null set. Theor. Math. Phys. 119(2), 629-639 (1999) · Zbl 0944.35016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.