Quantum non demolition measurements: parameter estimation for mixtures of multinomials. (English) Zbl 1388.81018

Summary: In quantum non demolition measurements, the sequence of observations is distributed as a mixture of multinomial random variables. Parameters of the dynamics are naturally encoded into this family of distributions. We show the local asymptotic mixed normality of the underlying statistical model and the consistency of the maximum likelihood estimator. Furthermore, we prove the asymptotic optimality of this estimator as it saturates the usual Cramér Rao bound.


81P15 Quantum measurement theory, state operations, state preparations
62F12 Asymptotic properties of parametric estimators
Full Text: DOI arXiv Euclid


[1] M. Ballesteros, M. Fraas, J. Fröhlich and B. Schubnel, Indirect acquisition of information in quantum mechanics. J. Stat. Phys. 162 (2016) 924-958. · Zbl 1337.81015
[2] M. Bauer and D. Bernard, Convergence of repeated quantum nondemolition measurements and wave-function collapse. Phys. Rev. A 84 (2011) 044103
[3] M. Bauer, T. Benoist and D. Bernard, Repeated quantum non-demolition measurements: convergence and continuous time limit. Ann. Henri Poincaré 14 (2013) 639-679. · Zbl 1273.81026
[4] M. Bauer, D. Bernard and T. Benoist, Iterated stochastic measurements. J. Phys. A 45 (2012) 494020. · Zbl 1260.81010
[5] T. Benoist and C. Pellegrini, Large time behavior and convergence rate for quantum filters under standard non demolition conditions. Comm. Math. Phys. 331 (2014) 703-723. · Zbl 1297.81017
[6] V. B. Braginsky, YI. Vorontsov and K. S. Thorne., Quantum nondemolition measurements. Science, 209 (4456) (1980) 547-57.
[7] C. Catana, L. Bouten and M. Guţă, Fisher informations and local asymptotic normality for continuous-time quantum Markov processes. J. Phys. A 48 (2015) 365301. · Zbl 1337.81029
[8] C. Guerlin, J. Bernu, S. Deleglise, C. Sayrin, S. Gleyzes, S. Kuhr, M. Brune, J. M. Raimond and S. Haroche, Progressive field-state collapse and quantum non-demolition photon counting Nature 448 (2007) 889-893.
[9] M. Guţă and A. Jenčová, Local asymptotic normality in quantum statistics Commun. Math. Phys., 276 (2007) 34-379. · Zbl 1148.81005
[10] M. Guţă and J. Kiukas, Equivalence classes and local asymptotic normality in system identification for quantum Markov chains. arXiv preprint arXiv :1402.3535 (2014). · Zbl 1319.81017
[11] A. S. Holevo, Statistical structure of quantum theory. Springer, 2003. · Zbl 1078.81047
[12] J. Kahn and M. Guţă, Local asymptotic normality and optimal estimation for finite dimensional quantum systems in Quantum stochastics and information: Statistics, Filtering and Control, V. P. Belavkin and M. Guţă editors, World Scientific 2008.
[13] P. Six, P. Campagne-Ibarcq, L. Bretheau, B. Huard and P. Rouchon, Parameter estimation from measurements along quantum trajectories, Proc. IEEE Conf. on Decision and Control, (2015) 7742-7748.
[14] A. W. van der Vaart, Asymptotic Statistics Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press 1998
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.