×

Quantum spectral curve for a cusped Wilson line in \( \mathcal{N}=4 \) SYM. (English) Zbl 1388.83660

Summary: We show that the Quantum Spectral Curve (QSC) formalism, initially formulated for the spectrum of anomalous dimensions of all local single trace operators in \( \mathcal{N}=4 \) SYM, can be extended to the generalized cusp anomalous dimension for all values of the parameters. We find that the large spectral parameter asymptotics and some analyticity properties have to be modified, but the functional relations are unchanged. As a demonstration, we find an all-loop analytic expression for the first two nontrivial terms in the small \(|\pm\theta|\) expansion. We also present nonperturbative numerical results at generic angles which match perfectly 4-loop perturbation theory and the classical string prediction.
The reformulation of the problem in terms of the QSC opens the possibility to explore many open questions. We attach to this paper several Mathematica notebooks which should facilitate future studies.

MSC:

83E30 String and superstring theories in gravitational theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys.99 (2012) 3 [arXiv:1012.3982] [INSPIRE]. · Zbl 1268.81126
[2] N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum Spectral Curve for \[PlanarN=4 \mathcal{N}=4\] super-Yang-Mills Theory, Phys. Rev. Lett.112 (2014) 011602 [arXiv:1305.1939] [INSPIRE].
[3] N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum spectral curve for arbitrary state/operator in AdS5/CFT4, JHEP09 (2015) 187 [arXiv:1405.4857] [INSPIRE]. · Zbl 1388.81214
[4] N. Gromov, V. Kazakov and P. Vieira, Exact Spectrum of Anomalous Dimensions of Planar N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.103 (2009) 131601 [arXiv:0901.3753] [INSPIRE].
[5] D. Bombardelli, D. Fioravanti and R. Tateo, Thermodynamic Bethe Ansatz for planar AdS/CFT: A proposal, J. Phys.A 42 (2009) 375401 [arXiv:0902.3930] [INSPIRE]. · Zbl 1176.81091
[6] N. Gromov, V. Kazakov, A. Kozak and P. Vieira, Exact Spectrum of Anomalous Dimensions of Planar N = 4 Supersymmetric Yang-Mills Theory: TBA and excited states, Lett. Math. Phys.91 (2010) 265 [arXiv:0902.4458] [INSPIRE]. · Zbl 1186.81102
[7] G. Arutyunov and S. Frolov, Thermodynamic Bethe Ansatz for the AdS5× S5Mirror Model, JHEP05 (2009) 068 [arXiv:0903.0141] [INSPIRE].
[8] A. Cavaglia, D. Fioravanti and R. Tateo, Extended Y-system for the AdS5/CFT4correspondence, Nucl. Phys.B 843 (2011) 302 [arXiv:1005.3016] [INSPIRE]. · Zbl 1207.81105
[9] C. Marboe and D. Volin, Quantum spectral curve as a tool for a perturbative quantum field theory, Nucl. Phys.B 899 (2015) 810 [arXiv:1411.4758] [INSPIRE]. · Zbl 1331.81209
[10] C. Marboe, V. Velizhanin and D. Volin, Six-loop anomalous dimension of twist-two operators in planar N = 4 SYM theory, JHEP07 (2015) 084 [arXiv:1412.4762] [INSPIRE]. · Zbl 1388.81347
[11] N. Gromov, F. Levkovich-Maslyuk, G. Sizov and S. Valatka, Quantum spectral curve at work: from small spin to strong coupling \[inN=4 \mathcal{N}=4\] SYM, JHEP07 (2014) 156 [arXiv:1402.0871] [INSPIRE].
[12] N. Gromov, F. Levkovich-Maslyuk and G. Sizov, Quantum Spectral Curve and the Numerical Solution of the Spectral Problem in AdS5/CFT4, arXiv:1504.06640 [INSPIRE]. · Zbl 1388.81106
[13] M. Alfimov, N. Gromov and V. Kazakov, QCD Pomeron from AdS/CFT Quantum Spectral Curve, JHEP07 (2015) 164 [arXiv:1408.2530] [INSPIRE]. · Zbl 1388.81267
[14] N. Gromov, F. Levkovich-Maslyuk and G. Sizov, Pomeron Eigenvalue at Three Loops \[inN=4 \mathcal{N}=4\] Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.115 (2015) 251601 [arXiv:1507.04010] [INSPIRE].
[15] A. Cavaglià, D. Fioravanti, N. Gromov and R. Tateo, Quantum Spectral Curve of \[theN=6 \mathcal{N}=6\] Supersymmetric Chern-Simons Theory, Phys. Rev. Lett.113 (2014) 021601 [arXiv:1403.1859] [INSPIRE].
[16] L. Anselmetti, D. Bombardelli, A. Cavaglià and R. Tateo, 12 loops and triple wrapping in ABJM theory from integrability, JHEP10 (2015) 117 [arXiv:1506.09089] [INSPIRE]. · Zbl 1388.81394
[17] N. Gromov and G. Sizov, Exact Slope and Interpolating Functions in N = 6 Supersymmetric Chern-Simons Theory, Phys. Rev. Lett.113 (2014) 121601 [arXiv:1403.1894] [INSPIRE].
[18] N. Gromov and F. Levkovich-Maslyuk, Y-system and β-deformed N = 4 super-Yang-Mills, J. Phys.A 44 (2011) 015402 [arXiv:1006.5438] [INSPIRE]. · Zbl 1205.81104
[19] G. Arutyunov, M. de Leeuw and S.J. van Tongeren, Twisting the Mirror TBA, JHEP02 (2011) 025 [arXiv:1009.4118] [INSPIRE]. · Zbl 1294.81158
[20] M. de Leeuw and S.J. van Tongeren, The spectral problem for strings on twisted AdS5× S5, Nucl. Phys.B 860 (2012) 339 [arXiv:1201.1451] [INSPIRE]. · Zbl 1246.81231
[21] M. Kim, Spectral curve for γ-deformed AdS/CFT, Phys. Lett.B 735 (2014) 332 [arXiv:1401.4032] [INSPIRE]. · Zbl 1380.81154
[22] G. Arutyunov, M. de Leeuw and S.J. van Tongeren, The Quantum Deformed Mirror TBA I, JHEP10 (2012) 090 [arXiv:1208.3478] [INSPIRE]. · Zbl 1397.81215
[23] G. Arutyunov, M. de Leeuw and S.J. van Tongeren, The Quantum Deformed Mirror TBA II, JHEP02 (2013) 012 [arXiv:1210.8185] [INSPIRE]. · Zbl 1342.81377
[24] G. Arutyunov, M. de Leeuw and S.J. van Tongeren, The exact spectrum and mirror duality of the (AdS5× S5)ηsuperstring, Theor. Math. Phys.182 (2015) 23 [arXiv:1403.6104] [INSPIRE]. · Zbl 1317.81211
[25] Z. Bajnok et al., The spectrum of tachyons in AdS/CFT, JHEP03 (2014) 055 [arXiv:1312.3900] [INSPIRE].
[26] Á. Hegedüs, Extensive numerical study of a D-brane,D¯\[ \overline{D} \]-brane system in AdS5/CFT4, JHEP04 (2015) 107 [arXiv:1501.07412] [INSPIRE]. · Zbl 1388.83666
[27] Z. Bajnok, M. Kim and L. Palla, Spectral curve for open strings attached to the Y = 0 brane, JHEP04 (2014) 035 [arXiv:1311.7280] [INSPIRE].
[28] Z. Bajnok, R.I. Nepomechie, L. Palla and R. Suzuki, Y-system for Y = 0 brane in planar AdS/CFT, JHEP08 (2012) 149 [arXiv:1205.2060] [INSPIRE]. · Zbl 1397.81219
[29] K. Zoubos, Review of AdS/CFT Integrability, Chapter IV.2: Deformations, Orbifolds and Open Boundaries, Lett. Math. Phys.99 (2012) 375 [arXiv:1012.3998] [INSPIRE]. · Zbl 1244.81057
[30] D.H. Correa, V. Regelskis and C.A.S. Young, Integrable achiral D5-brane reflections and asymptotic Bethe equations, J. Phys.A 44 (2011) 325403 [arXiv:1105.3707] [INSPIRE]. · Zbl 1226.81175
[31] N. MacKay and V. Regelskis, Achiral boundaries and the twisted Yangian of the D5-brane, JHEP08 (2011) 019 [arXiv:1105.4128] [INSPIRE]. · Zbl 1298.81318
[32] S. Caron-Huot and J.M. Henn, Solvable Relativistic Hydrogenlike System in Supersymmetric Yang-Mills Theory, Phys. Rev. Lett.113 (2014) 161601 [arXiv:1408.0296] [INSPIRE].
[33] D. Correa, J. Maldacena and A. Sever, The quark anti-quark potential and the cusp anomalous dimension from a TBA equation, JHEP08 (2012) 134 [arXiv:1203.1913] [INSPIRE].
[34] N. Drukker, Integrable Wilson loops, JHEP10 (2013) 135 [arXiv:1203.1617] [INSPIRE]. · Zbl 1342.83237
[35] D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, JHEP06 (2012) 048 [arXiv:1202.4455] [INSPIRE].
[36] B. Fiol, B. Garolera and A. Lewkowycz, Exact results for static and radiative fields of a quark in N = 4 super Yang-Mills, JHEP05 (2012) 093 [arXiv:1202.5292] [INSPIRE].
[37] N. Gromov and A. Sever, Analytic Solution of Bremsstrahlung TBA, JHEP11 (2012) 075 [arXiv:1207.5489] [INSPIRE]. · Zbl 1397.81062
[38] N. Gromov, F. Levkovich-Maslyuk and G. Sizov, Analytic Solution of Bremsstrahlung TBA II: Turning on the Sphere Angle, JHEP10 (2013) 036 [arXiv:1305.1944] [INSPIRE]. · Zbl 1342.83035
[39] G. Sizov and S. Valatka, Algebraic Curve for a Cusped Wilson Line, JHEP05 (2014) 149 [arXiv:1306.2527] [INSPIRE]. · Zbl 1333.81197
[40] M. Beccaria and G. Macorini, On a discrete symmetry of the Bremsstrahlung function in N = 4 SYM, JHEP07 (2013) 104 [arXiv:1305.4839] [INSPIRE]. · Zbl 1342.81477
[41] A. Dekel, Algebraic Curves for Factorized String Solutions, JHEP04 (2013) 119 [arXiv:1302.0555] [INSPIRE]. · Zbl 1342.81418
[42] R.A. Janik and P. Laskos-Grabowski, Surprises in the AdS algebraic curve constructions: Wilson loops and correlation functions, Nucl. Phys.B 861 (2012) 361 [arXiv:1203.4246] [INSPIRE]. · Zbl 1246.81136
[43] Z. Bajnok, J. Balog, D.H. Correa, Á. Hegedüs, F.I. Schaposnik Massolo and G. Zsolt Tóth, Reformulating the TBA equations for the quark anti-quark potential and their two loop expansion, JHEP03 (2014) 056 [arXiv:1312.4258] [INSPIRE].
[44] Y. Makeenko, P. Olesen and G.W. Semenoff, Cusped SYM Wilson loop at two loops and beyond, Nucl. Phys.B 748 (2006) 170 [hep-th/0602100] [INSPIRE]. · Zbl 1186.81096
[45] N. Drukker and V. Forini, Generalized quark-antiquark potential at weak and strong coupling, JHEP06 (2011) 131 [arXiv:1105.5144] [INSPIRE]. · Zbl 1298.81379
[46] D. Correa, J. Henn, J. Maldacena and A. Sever, The cusp anomalous dimension at three loops and beyond, JHEP05 (2012) 098 [arXiv:1203.1019] [INSPIRE]. · Zbl 1348.81442
[47] J.M. Henn and T. Huber, The four-loop cusp anomalous dimension \[inN=4 \mathcal{N}=4\] super Yang-Mills and analytic integration techniques for Wilson line integrals, JHEP09 (2013) 147 [arXiv:1304.6418] [INSPIRE].
[48] N. Gromov and P. Vieira, The AdS5× S5superstring quantum spectrum from the algebraic curve, Nucl. Phys.B 789 (2008) 175 [hep-th/0703191] [INSPIRE]. · Zbl 1151.83364
[49] S. Leurent and D. Volin, Multiple zeta functions and double wrapping in planar N = 4 SYM, Nucl. Phys.B 875 (2013) 757 [arXiv:1302.1135] [INSPIRE]. · Zbl 1331.81276
[50] D. Maître, HPL, a mathematica implementation of the harmonic polylogarithms, Comput. Phys. Commun.174 (2006) 222 [hep-ph/0507152] [INSPIRE]. · Zbl 1196.68330
[51] D. Maître, Extension of HPL to complex arguments, Comput. Phys. Commun.183 (2012) 846 [hep-ph/0703052] [INSPIRE].
[52] J. Ablinger, A Computer Algebra Toolbox for Harmonic Sums Related to Particle Physics, arXiv:1011.1176 [INSPIRE].
[53] J. Ablinger, Computer Algebra Algorithms for Special Functions in Particle Physics, Ph.D. Thesis, Johannes Kepler University, Linz, Austria (2012).
[54] J. Ablinger, J. Blümlein and C. Schneider, Analytic and Algorithmic Aspects of Generalized Harmonic Sums and Polylogarithms, J. Math. Phys.54 (2013) 082301 [arXiv:1302.0378] [INSPIRE]. · Zbl 1295.81071
[55] J. Ablinger, J. Blumlein and C. Schneider, Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials, J. Math. Phys.52 (2011) 102301 [arXiv:1105.6063] [INSPIRE]. · Zbl 1272.81127
[56] J. Blumlein, Structural Relations of Harmonic Sums and Mellin Transforms up to Weight w = 5, Comput. Phys. Commun.180 (2009) 2218 [arXiv:0901.3106] [INSPIRE]. · Zbl 1197.81036
[57] E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys.A 15 (2000) 725 [hep-ph/9905237] [INSPIRE]. · Zbl 0951.33003
[58] J.A.M. Vermaseren, Harmonic sums, Mellin transforms and integrals, Int. J. Mod. Phys.A 14 (1999) 2037 [hep-ph/9806280] [INSPIRE]. · Zbl 0939.65032
[59] V. Kazakov, S. Leurent and D. Volin, T-system on T-hook: Grassmannian Solution and Twisted Quantum Spectral Curve, arXiv:1510.02100 [INSPIRE]. · Zbl 1390.81225
[60] D. Bykov and K. Zarembo, Ladders for Wilson Loops Beyond Leading Order, JHEP09 (2012) 057 [arXiv:1206.7117] [INSPIRE]. · Zbl 1397.81076
[61] J.M. Henn and T. Huber, Systematics of the cusp anomalous dimension, JHEP11 (2012) 058 [arXiv:1207.2161] [INSPIRE]. · Zbl 1397.81077
[62] V. Forini, Quark-antiquark potential in AdS at one loop, JHEP11 (2010) 079 [arXiv:1009.3939] [INSPIRE]. · Zbl 1294.81276
[63] N. Gromov and F. Levkovich-Maslyuk, Quark-anti-quark potential in N = 4 SYM, arXiv:1601.05679 [INSPIRE]. · Zbl 1390.81597
[64] C. Duhr, Mathematical aspects of scattering amplitudes, arXiv:1411.7538 [INSPIRE]. · Zbl 1334.81100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.