zbMATH — the first resource for mathematics

Chaotic and non-chaotic strange attractors of a class of non-autonomous systems. (English) Zbl 1390.34164
Summary: In this paper, the dynamics of a class of non-autonomous systems, generated from a unified chaotic autonomous system, is studied. It is found, via parameter modulation, that they have chaotic and non-chaotic strange attractors (NCSA). Several representative systems are constructed to illustrate the complex strange dynamics. The first example exhibits Lorenz-like behavior and Chen-like behavior at different time intervals. The second illustrates the existence of NCSA, which is constructed by “joining” the chaotic Chen system and a system with regular dynamics. The third is constructed based on the topological structure of the original autonomous systems, which has complex transient dynamics at the beginning, with a periodic orbit as the omega-limit set. The last one has quasi-periodic coefficients, yielding strange dynamics. These examples demonstrate that non-autonomous systems can have extremely rich and interesting dynamics under certain conditions.{
©2018 American Institute of Physics}

34C60 Qualitative investigation and simulation of ordinary differential equation models
37C60 Nonautonomous smooth dynamical systems
34C28 Complex behavior and chaotic systems of ordinary differential equations
34D45 Attractors of solutions to ordinary differential equations
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
Full Text: DOI
[1] Bezhaeva, Z. I.; Oseledets, V. I., An example of a strange nonchaotic attractor, Funct. Anal. App., 30, 223-229, (1996) · Zbl 0890.58034
[2] Cheban, D.; Duan, J., Recurrent motions and global attractors of nonautonomous Lorenz systems, Dyn. Syst., 19, 41-59, (2004) · Zbl 1060.37016
[3] Cheban, D. N.; Kloeden, P. E.; Schmalfuss, B., The relationship between pullback, forward and global attractors of nonautonomous dynamical systems, Nonlinear Dyn. Syst. Theory, 2, 125-144, (2002) · Zbl 1054.34087
[4] Chen, G.; Dong, X., On feedback control of chaotic continuous-time systems, IEEE Trans. Circuits Syst. I, 40, 591-601, (1993) · Zbl 0800.93758
[5] Chen, G.; Ueta, T., Yet another chaotic attractor, Int. J. Bifurcation Chaos, 9, 1465-1466, (1999) · Zbl 0962.37013
[6] Chepyzhov, V. V., Uniform attractors of dynamical processes and non-autonomous equations of mathematical physics, Russ. Math. Surv., 68, 349, (2013) · Zbl 1278.35024
[7] Chua, L. O.; Komuro, M.; Matsumoto, T., The double scroll family, IEEE Trans. Circuits Syst., 33, 1073-1118, (1986) · Zbl 0634.58015
[8] Ding, M.; Grebogi, C.; Ott, E., Evolution of attractors in quasiperiodically forced systems: From quasiperiodic to strange nonchaotic to chaotic, Phys. Rev. A, 39, 2593-2598, (1989)
[9] Ding, M.; Grebogi, C.; Ott, E., Dimensions of strange nonchaotic attractors, Phys. Lett. A, 137, 167-172, (1989)
[10] Eckmann, J. P.; Ruelle, D., Ergodic theory of chaos and strange attractors, Rev. Mod. Phys., 57, 617-656, (1985) · Zbl 0989.37516
[11] Feng, J.; Tse, C. K., Reconstruction of Chaotic Signals with Applications to Chaos-Based Communications, (2007), World Scientific, Singapore-Tsinghua University Press: World Scientific, Singapore-Tsinghua University Press, Beijing
[12] Feudel, U.; Kurths, J.; Pikovsky, A. S., Strange non-chaotic attractor in a quasiperiodically forced circle map, Physica D, 88, 176-186, (1995) · Zbl 0894.58042
[13] Franz, M.; Zhang, M., Suppression and creation of chaos in a periodically forced Lorenz system, Phys. Rev. E, 52, 4, 3558-3565, (1995)
[14] Gottwald, G. A.; Melbourne, I.; Skokos, C.; Gottwald, G. A.; Laskar, J., The 0-1 test for chaos: A review, Chaos Detection and Predictability, (2016), Springer
[15] Grebogi, C.; Ott, E.; Pelikan, S.; Yorke, J. A., Strange attractors that are not chaotic, Physica D, 13, 261-268, (1984) · Zbl 0588.58036
[16] Heagy, J. F.; Hammel, S. M., The birth of strange nonchaotic attractors, Physica D, 70, 140-153, (1994) · Zbl 0807.58031
[17] Jorba, À.; Tatjer, J. C., Old and new results on strange nonchaotic attractors, Int. J. Bifurcation Chaos, 17, 3895-3928, (2007) · Zbl 1149.37303
[18] Kapitaniak, T., Generating strange nonchaotic trajectories, Phys. Rev. E, 47, 1408-1410, (1993)
[19] Keller, G., A note on strange nonchaotic attractors, Fundam. Math., 151, 139-148, (1996) · Zbl 0899.58033
[20] Kuznestov, S. P.; Pikovsky, A. S.; Feudel, U., Birth of a strange nonchaotic attractor: A renormalization group analysis, Phys. Rev. E, 51, 1629-1632, (1995)
[21] Lainscsek, C., A class of Lorenz-like systems, Chaos, 22, 013126, (2012) · Zbl 1331.37027
[22] Letellier, C.; Amaral, G. F. V.; Aguirre, L. A., Insights into the algebraic structure of Lorenz-like systems using feedback circuit analysis and piecewise affine models, Chaos, 17, 023104, (2007) · Zbl 1159.37364
[23] Li, T.; Yorke, J. A., Period three implies chaos, Am. Math. Mon., 82, 985-992, (1975) · Zbl 0351.92021
[24] Lorenz, E., Deterministic non-periodic flow, J. Atmos. Sci., 20, 130-141, (1963) · Zbl 1417.37129
[25] Lü, J.; Chen, G., A new chaotic attractor coined, Int. J. Bifurcation Chaos, 12, 659-661, (2002) · Zbl 1063.34510
[26] Lü, J.; Chen, G.; Cheng, D.; Čelikovsky, S., Bridge the gap between the Lorenz system and the Chen system, Int. J. Bifurcation Chaos, 12, 2917-2926, (2002) · Zbl 1043.37026
[27] Neumann, E.; Pikovsky, A., Comment on ‘Simple approach to the creation of a strange nonchaotic attractor in any chaotic system, Phys. Rev. E, 64, 058201-058204, (2001)
[28] Parker, T. S.; Chua, L. O., Practical Numerical Algorithms for Chaotic Systems, (1989), Springer-Verlag: Springer-Verlag, New York · Zbl 0692.58001
[29] Poincaré, H. J., Sur le problème des trois corps et les équations de la dynamique, Acta Math., 13, 1-270, (1890) · JFM 22.0907.01
[30] Poincaré, H. J., Les Méthodes Nouvelles de la Mécanique Celeste, 1-3, (1892), Gauthiers-Villars: Gauthiers-Villars, Paris
[31] Prasad, A.; Nandi, A.; Ramaswamy, R., Aperiodic nonchaotic attractors, strange and otherwise, Int J. Bifurcation Chaos, 17, 3397-3407, (2007) · Zbl 1141.37308
[32] Romeiras, F. J.; Bondeson, A.; Ott, E.; Antonsen, T. M. Jr.; Grebogi, C., Quasiperiodically forced dynamical systems with strange nonchaotic attractors, Physica D, 26, 277-294, (1987) · Zbl 0612.58030
[33] Romeiras, F. J.; Bondeson, A.; Ott, E.; Antonsen, T. M. Jr.; Grebogi, C., Quasiperiodic forcing and the observability of strange nonchaotic attractors, Phys. Scr., 40, 442-444, (1989) · Zbl 1063.37520
[34] Rössler, O. E., An equation for continuous chaos, Phys. Lett. A, 57, 397-398, (1976) · Zbl 1371.37062
[35] Saravanan, R.; Narayan, O.; Banerjee, K.; Bhattacharjee, J. K., Chaos in a periodically forced Lorenz system, Phys. Rev. A, 31, 520-522, (1985)
[36] Sataev, E. A., Non-existence of stable trajectories in non-autonomous perturbations of systems of Lorenz type, Sb. Math., 196, 99-134, (2005)
[37] Schmalfuss, B., Attractors for nonautonomous and random dynamical systems perturbed by impulses, Discret. Contin. Dyn. Syst., 9, 727-744, (2003) · Zbl 1029.37030
[38] Shuai, J. M.; Wong, K. W., Simple approach to the creation of a strange nonchaotic attractor in any chaotic system, Phys. Rev. E, 59, 5338-5343, (1999)
[39] Sparrow, C., The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, (1982), Springer-Verlag: Springer-Verlag, New York · Zbl 0504.58001
[40] Wang, X.; Zhan, M.; Lai, C.; Lai, Y., Strange nonchaotic attractors in random dynamical systems, Phy. Rev. Lett., 92, 074102, (2004)
[41] Wiggins, S., Introduction to Applied Nonlinear Dynamical System and Chaos, (1990), Springer-Verlag · Zbl 0701.58001
[42] Yalçınkaya, T.; Lai, Y., Bifurcation to strange nonchaotic attractors, Phys. Rev. E, 56, 1623-1630, (1997)
[43] Zhang, Y.; Luo, G., Torus-doubling bifurcations and strange nonchaotic attractors in a vibro-impact system, J. Sound Vib., 332, 5462-5475, (2013)
[44] Zhao, Q.; Zhou, S.; Li, X., Synchronization slaved by partial-states in lattices of non-autonomous coupled Lorenz equation, Commun. Nonlinear Sci. Numer. Simul., 13, 928-938, (2008) · Zbl 1221.37073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.