×

zbMATH — the first resource for mathematics

Time decay for solutions to the Stokes equations with drift. (English) Zbl 1390.35237

MSC:
35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Borchers, W.; Miyakawa, T., \(L^2\) decay for the Navier-Stokes flow in half space, Math. Ann., 282, 139-155, (1988) · Zbl 0627.35076
[2] Caffarelli, L.; Kohn, R.-V.; Nirenberg, L., Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35, 771-831, (1982) · Zbl 0509.35067
[3] Kajikiya, R.; Miyakawa, T., On \(L^2\) decay of weak solutions of the Navier-Stokes equations in \(R^n\), Math. Z., 192, 135-148, (1986) · Zbl 0607.35072
[4] Koch, G.; Nadirashvili, N.; Seregin, A.; Šverák, V., Liouville theorems for the Navier-Stokes equations and applications, Acta Math., 203, 1, 83-105, (2009) · Zbl 1208.35104
[5] Schonbek, M. E., \(L^2\) decay for weak solutions of the Navier-Stokes equations, Arch. Ration. Mech. Anal., 88, 3, 209-222, (1985) · Zbl 0602.76031
[6] Seregin, G. A., Local regularity of suitable weak solutions to the Navier-Stokes equations near the boundary, J. Math. Fluid Mech., 4, 1, 1-29, (2002) · Zbl 0997.35044
[7] Seregin, G. A., Estimates of suitable weak solutions to the Navier-Stokes equations in critical Morrey spaces, J. Math. Sci., 143, 2, 2961-2968, (2007)
[8] Seregin, G.; Šverák, V., On type I singularities of the local axi-symmetric solutions of the Navier-Stokes equations, Comm. Partial Differential Equations, 34, 171-201, (2009) · Zbl 1180.35002
[9] Seregin, G.; Zajaczkowski, W., A sufficient condition of local regularity for the Navier-Stokes equations, Zap. Nauchn. Sem. S.-Petersburg. Otdel. Mat. Inst. Steklov. (POMI), 336, 46-54, (2006) · Zbl 1137.35056
[10] Sohr, H., The Navier-Stokes Equations\(:\) An Elementary Functional Analytic Approach, (2001), Birkhuser Verlag, Basel · Zbl 0983.35004
[11] Wiegner, M., Decay results for weak solutions of the Navier-Stokes equations on \(\mathbb{R}^n\), J. London Math. Soc. (2), 35, 2, 303-313, (1987) · Zbl 0652.35095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.