×

Universality in random moment problems. (English) Zbl 1390.60084

Summary: Let \(\mathcal{M}_n(E)\) denote the set of vectors of the first \(n\) moments of probability measures on \(E\subset \mathbb{R}\) with existing moments. The investigation of such moment spaces in high dimension has found considerable interest in the recent literature. For instance, it has been shown that a uniformly distributed moment sequence in \(\mathcal{M}_n([0,1])\) converges in the large \(n\) limit to the moment sequence of the arcsine distribution. In this article we provide a unifying viewpoint by identifying classes of more general distributions on \(\mathcal{M}_n(E)\) for \(E=[a,b]\), \(E=\mathbb{R}_+\) and \(E=\mathbb{R}\), respectively, and discuss universality problems within these classes. In particular, we demonstrate that the moment sequence of the arcsine distribution is not universal for \(E\) being a compact interval. Rather, there is a universal family of moment sequences of which the arcsine moment sequence is one particular member. On the other hand, on the moment spaces \(\mathcal{M}_n(\mathbb{R}_+)\) and \(\mathcal{M}_n(\mathbb{R})\) the random moment sequences governed by our distributions exhibit for \(n\rightarrow \infty\) a universal behaviour: The first \(k\) moments of such a random vector converge almost surely to the first \(k\) moments of the Marchenko-Pastur distribution (half line) and Wigner’s semi-circle distribution (real line). Moreover, the fluctuations around the limit sequences are Gaussian. We also obtain moderate and large deviations principles and discuss relations of our findings with free probability.

MSC:

60F05 Central limit and other weak theorems
30E05 Moment problems and interpolation problems in the complex plane
60B20 Random matrices (probabilistic aspects)

References:

[1] Akemann, G., Baik, J., and Di Francesco, P. (eds.), The Oxford handbook of random matrix theory, Oxford University Press, Oxford, 2011. · Zbl 1225.15004
[2] Anshelevich, M., Free Meixner states, Commun. Math. Phys. 276 (2007), no. 3, 863-899. · Zbl 1133.33001 · doi:10.1007/s00220-007-0322-3
[3] Bai, Z. and Silverstein, J. W., Spectral analysis of large dimensional random matrices, second ed., Springer Series in Statistics, Springer, New York, 2010. · Zbl 1301.60002
[4] Berg, C., Markov’s theorem revisited, J. Approx. Theory 78 (1994), no. 2, 260-275. · Zbl 0810.42014 · doi:10.1006/jath.1994.1076
[5] Castro, M. M. and Grünbaum, F. A., On a seminal paper by Karlin and McGregor, SIGMA Symmetry Integrability Geom. Methods Appl. 9 (2013), Paper 020, 11. · Zbl 1383.60064
[6] Chang, F. C., Kemperman, J. H. B., and Studden, W. J., A normal limit theorem for moment sequences, Ann. Probab. 21 (1993), no. 3, 1295-1309. · Zbl 0778.60010 · doi:10.1214/aop/1176989119
[7] Chihara, T. S., An introduction to orthogonal polynomials, Gordon and Breach Science Publishers, New York-London-Paris, 1978, Mathematics and its Applications, Vol. 13. · Zbl 0389.33008
[8] Cohen, J. M. and Trenholme, A. R., Orthogonal polynomials with a constant recursion formula and an application to harmonic analysis, J. Funct. Anal. 59 (1984), no. 2, 175-184. · Zbl 0549.43002 · doi:10.1016/0022-1236(84)90071-5
[9] Dembo, A. and Zeitouni, O., Large deviations techniques and applications, second ed., Applications of Mathematics (New York), vol. 38, Springer-Verlag, New York, 1998. · Zbl 0896.60013
[10] Dette, H. and Nagel, J., Distributions on unbounded moment spaces and random moment sequences, Ann. Probab. 40 (2012), no. 6, 2690-2704. · Zbl 1255.60032 · doi:10.1214/11-AOP693
[11] Dette, H. and Studden, W. J., The theory of canonical moments with applications in statistics, probability, and analysis, Wiley Series in Probability and Statistics: Applied Probability and Statistics, John Wiley & Sons, Inc., New York, 1997, A Wiley-Interscience Publication. · Zbl 0886.62002
[12] Dumitriu, I. and Edelman, A., Matrix models for beta ensembles, J. Math. Phys. 43 (2002), no. 11, 5830-5847. · Zbl 1060.82020 · doi:10.1063/1.1507823
[13] Gamboa, F. and Lozada-Chang, L.-V., Large deviations for random power moment problem, Ann. Probab. 32 (2004), no. 3B, 2819-2837. · Zbl 1062.60023 · doi:10.1214/009117904000000559
[14] Gamboa, F., Nagel, J., and Rouault, A., Sum rules via large deviations, J. Funct. Anal. 270 (2016), no. 2, 509-559. · Zbl 1327.47028 · doi:10.1016/j.jfa.2015.08.009
[15] Gamboa, F., Nagel, J., and Rouault, A., Sum rules and large deviations for spectral measures on the unit circle, Random Matrices Theory Appl. 6 (2017), no. 1, 1750005, 49. · Zbl 1361.60020 · doi:10.1142/S2010326317500058
[16] Gao, F. and Zhao, X., Delta method in large deviations and moderate deviations for estimators, Ann. Statist. 39 (2011), no. 2, 1211-1240. · Zbl 1216.62027 · doi:10.1214/10-AOS865
[17] Hamburger, H., über eine Erweiterung des Stieltjesschen Momentenproblems, Math. Ann. 81 (1920), no. 2-4, 235-319. · JFM 47.0427.04
[18] Hiai, F. and Petz, D., The semicircle law, free random variables and entropy, Mathematical Surveys and Monographs, vol. 77, American Mathematical Society, Providence, RI, 2000. · Zbl 0955.46037
[19] Karlin, S. and Shapley, L. S., Geometry of moment spaces, Mem. Amer. Math. Soc. No. 12 (1953), 93. · Zbl 0052.18501
[20] Karlin, S. and Studden, W. J., Tchebycheff systems: With applications in analysis and statistics, Pure and Applied Mathematics, Vol. XV, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1966. · Zbl 0153.38902
[21] Kesten, H., Symmetric random walks on groups, Trans. Amer. Math. Soc. 92 (1959), 336-354. · Zbl 0092.33503 · doi:10.1090/S0002-9947-1959-0109367-6
[22] Kreĭn, M. G. and Nudel’man, A. A., The Markov moment problem and extremal problems, American Mathematical Society, Providence, R.I., 1977, Ideas and problems of P. L. Čebyšev and A. A. Markov and their further development, Translated from the Russian by D. Louvish, Translations of Mathematical Monographs, Vol. 50. · Zbl 0361.42014
[23] Krishnapur, M., Rider, B., and Virág, B., Universality of the stochastic Airy operator, Comm. Pure Appl. Math. 69 (2016), no. 1, 145-199. · Zbl 1364.60015
[24] Lozada-Chang, L.-V., Asymptotic behavior of moment sequences, Electron. J. Probab. 10 (2005), no. 19, 662-690. · Zbl 1109.60019 · doi:10.1214/EJP.v10-202
[25] McKay, B. D., The expected eigenvalue distribution of a large regular graph, Linear Algebra Appl. 40 (1981), 203-216. · Zbl 0468.05039 · doi:10.1016/0024-3795(81)90150-6
[26] Meixner, J., Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion, J. London Math. Soc. S1-9 (1934), no. 1, 6. · JFM 60.0293.01 · doi:10.1112/jlms/s1-9.1.6
[27] Nica, A. and Speicher, R., Lectures on the combinatorics of free probability, London Mathematical Society Lecture Note Series, vol. 335, Cambridge University Press, Cambridge, 2006. · Zbl 1133.60003
[28] Saff, E. and Totik, V., Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 316, Springer-Verlag, Berlin, 1997, Appendix B by Thomas Bloom. · Zbl 0881.31001
[29] Saitoh, N. and Yoshida, H., The infinite divisibility and orthogonal polynomials with a constant recursion formula in free probability theory, Probab. Math. Statist. 21 (2001), no. 1, Acta Univ. Wratislav. No. 2298, 159-170. · Zbl 1020.46019
[30] Shohat, J. A. and Tamarkin, J. D., The Problem of Moments, American Mathematical Society Mathematical surveys, vol. I, American Mathematical Society, New York, 1943. · Zbl 0063.06973
[31] Skibinsky, M., The range of the \((n+1)\) th moment for distributions on \([0,\,1]\), J. Appl. Probability 4 (1967), 543-552. · Zbl 0189.18803 · doi:10.2307/3212220
[32] Skibinsky, M., Extreme \(n\) th moments for distributions on \([0,\,1]\) and the inverse of a moment space map, J. Appl. Probability 5 (1968), 693-701. · Zbl 0176.48203 · doi:10.2307/3211931
[33] Skibinsky, M., Some striking properties of binomial and beta moments, Ann. Math. Statist. 40 (1969), 1753-1764. · Zbl 0182.52401 · doi:10.1214/aoms/1177697387
[34] Stahl, H. and Totik, V., General orthogonal polynomials, Encyclopedia of Mathematics and its Applications, vol. 43, Cambridge University Press, Cambridge, 1992. · Zbl 0791.33009
[35] Verblunsky, S., On Positive Harmonic Functions, Proc. London Math. Soc. (2) 40 (1935), no. 4, 290-320. · Zbl 0013.15702
[36] Verblunsky, S., On Positive Harmonic Functions: A Contribution to the Algebra of Fourier Series, Proc. London Math. Soc. (2) 38 (1935), 125-157. · Zbl 0010.16202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.