Chen, Xia; Hu, Yaozhong; Song, Jian; Song, Xiaoming Temporal asymptotics for fractional parabolic Anderson model. (English) Zbl 1390.60101 Electron. J. Probab. 23, Paper No. 14, 39 p. (2018). Summary: In this paper, we consider fractional parabolic equation of the form \(\frac{\partial u} {\partial t}=-(-\Delta)^{\frac{\alpha}{2}}u+u\dot W(t,x)\), where \(-(-\Delta)^{\frac{\alpha}{2}}\) with \(\alpha \in (0,2]\) is a fractional Laplacian and \(\dot W\) is a Gaussian noise colored both in space and time. The precise moment Lyapunov exponents for the Stratonovich solution and the Skorohod solution are obtained by using a variational inequality and a Feynman-Kac type large deviation result for space-time Hamiltonians driven by \(\alpha\)-stable process. As a byproduct, we obtain the critical values for \(\theta\) and \(\eta\) such that \(\mathbb{E} \exp \left (\theta \left (\int_0^1 \int_0^1 |r-s|^{-\beta_0}\gamma (X_r-X_s)drds\right)^\eta\right)\) is finite, where \(X\) is \(d\)-dimensional symmetric \(\alpha\)-stable process and \(\gamma (x)\) is \(|x|^{-\beta}\) or \(\prod_{j=1}^d|x_j|^{-\beta_j}\). Cited in 11 Documents MSC: 60F10 Large deviations 60H15 Stochastic partial differential equations (aspects of stochastic analysis) 60G15 Gaussian processes 60G52 Stable stochastic processes Keywords:Lyapunov exponent; Gaussian noise; \(\alpha\)-stable process; fractional parabolic Anderson model; Feynman-Kac representation PDFBibTeX XMLCite \textit{X. Chen} et al., Electron. J. Probab. 23, Paper No. 14, 39 p. (2018; Zbl 1390.60101) Full Text: DOI arXiv Euclid References: [1] Tom Alberts, Konstantin Khanin, and Jeremy Quastel, The continuum directed random polymer, J. Stat. Phys. 154 (2014), no. 1-2, 305-326. · Zbl 1291.82143 · doi:10.1007/s10955-013-0872-z [2] Raluca M. Balan and Daniel Conus, A note on intermittency for the fractional heat equation, Statist. Probab. Lett. 95 (2014), 6-14. · Zbl 1300.60077 [3] Raluca M. Balan and Daniel Conus, Intermittency for the wave and heat equations with fractional noise in time, Ann. Probab. 44 (2016), no. 2, 1488-1534. · Zbl 1343.60081 · doi:10.1214/15-AOP1005 [4] Richard Bass, Xia Chen, and Jay Rosen, Large deviations for Riesz potentials of additive processes, Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009), no. 3, 626-666. · Zbl 1181.60035 · doi:10.1214/08-AIHP181 [5] Francesco Caravenna, Rongfeng Sun, and Nikos Zygouras, Polynomial chaos and scaling limits of disordered systems, J. Eur. Math. Soc. (JEMS) 19 (2017), no. 1, 1-65. · Zbl 1364.82026 · doi:10.4171/JEMS/660 [6] René A. Carmona and S. A. Molchanov, Parabolic Anderson problem and intermittency, Mem. Amer. Math. Soc. 108 (1994), no. 518, viii+125. · Zbl 0925.35074 [7] Le Chen, Guannan Hu, Yaozhong Hu, and Jingyu Huang, Space-time fractional diffusions in Gaussian noisy environment, Stochastics 89 (2017), no. 1, 171-206. · Zbl 1379.60065 · doi:10.1080/17442508.2016.1146282 [8] Xia Chen, Random walk intersections, Mathematical Surveys and Monographs, vol. 157, American Mathematical Society, Providence, RI, 2010, Large deviations and related topics. [9] Xia Chen, Precise intermittency for the parabolic Anderson equation with an \((1+1)\)-dimensional time-space white noise, Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015), no. 4, 1486-1499. · Zbl 1333.60136 [10] Xia Chen, Moment asymptotics for parabolic Anderson equation with fractional time-space noise: in Skorokhod regime, Ann. Inst. Henri Poincaré Probab. Stat. 53 (2017), no. 2, 819-841. · Zbl 1386.60214 · doi:10.1214/15-AIHP738 [11] Xia Chen, Yaozhong Hu, Jian Song, and Fei Xing, Exponential asymptotics for time-space Hamiltonians, Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015), no. 4, 1529-1561. · Zbl 1337.60201 · doi:10.1214/13-AIHP588 [12] Xia Chen, Wenbo V. Li, and Jay Rosen, Large deviations for local times of stable processes and stable random walks in 1 dimension, Electron. J. Probab. 10 (2005), no. 16, 577-608. · Zbl 1109.60016 · doi:10.1214/EJP.v10-260 [13] Xia Chen and Jay Rosen, Large deviations and renormalization for Riesz potentials of stable intersection measures, Stochastic Process. Appl. 120 (2010), no. 9, 1837-1878. · Zbl 1226.60042 · doi:10.1016/j.spa.2010.05.006 [14] Ivan Corwin, The Kardar-Parisi-Zhang equation and universality class, Random Matrices Theory Appl. 1 (2012), no. 1, 1130001, 76. · Zbl 1247.82040 · doi:10.1142/S2010326311300014 [15] Robert C. Dalang, Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.’s, Electron. J. Probab. 4 (1999), no. 6, 29 pp. · Zbl 0922.60056 [16] Amir Dembo and Ofer Zeitouni, Large deviations techniques and applications, second ed., Applications of Mathematics (New York), vol. 38, Springer-Verlag, New York, 1998. · Zbl 0896.60013 [17] M. D. Donsker and S. R. S. Varadhan, Asymptotics for the Wiener sausage, Comm. Pure Appl. Math. 28 (1975), no. 4, 525-565. · Zbl 0333.60077 [18] M. D. Donsker and S. R. S. Varadhan, Asymptotics for the polaron, Comm. Pure Appl. Math. 36 (1983), no. 4, 505-528. · Zbl 0538.60081 [19] Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988, General theory, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication. · Zbl 0635.47001 [20] Richard P. Feynman, Statistical mechanics, Advanced Book Classics, Perseus Books, Advanced Book Program, Reading, MA, 1998, A set of lectures, Reprint of the 1972 original. [21] Yaozhong Hu and David Nualart, Stochastic heat equation driven by fractional noise and local time, Probab. Theory Related Fields 143 (2009), no. 1-2, 285-328. · Zbl 1152.60331 · doi:10.1007/s00440-007-0127-5 [22] Yaozhong Hu, David Nualart, and Jian Song, Feynman-Kac formula for heat equation driven by fractional white noise, Ann. Probab. 39 (2011), no. 1, 291-326. · Zbl 1210.60056 · doi:10.1214/10-AOP547 [23] Yaozhong Hu, David Nualart, and Fangjun Xu, Central limit theorem for an additive functional of the fractional Brownian motion, Ann. Probab. 42 (2014), no. 1, 168-203. · Zbl 1294.60042 · doi:10.1214/12-AOP825 [24] Maria Jolis, The Wiener integral with respect to second order processes with stationary increments, J. Math. Anal. Appl. 366 (2010), no. 2, 607-620. · Zbl 1188.60027 · doi:10.1016/j.jmaa.2010.01.058 [25] Davar Khoshnevisan, Analysis of stochastic partial differential equations, CBMS Regional Conference Series in Mathematics, vol. 119, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2014. · Zbl 1304.60005 [26] Khoa Lê, A remark on a result of Xia Chen, Statist. Probab. Lett. 118 (2016), 124-126. · Zbl 1375.60108 [27] Chiranjib Mukherjee and S. R. S. Varadhan, Brownian occupation measures, compactness and large deviations, Ann. Probab. 44 (2016), no. 6, 3934-3964. · Zbl 1364.60037 · doi:10.1214/15-AOP1065 [28] David Nualart, The Malliavin calculus and related topics, second ed., Probability and its Applications (New York), Springer-Verlag, Berlin, 2006. · Zbl 1099.60003 [29] Jian Song, Asymptotic behavior of the solution of heat equation driven by fractional white noise, Statist. Probab. Lett. 82 (2012), no. 3, 614-620. · Zbl 1239.60061 · doi:10.1016/j.spl.2011.11.017 [30] Jian Song, On a class of stochastic partial differential equations, Stochastic Process. Appl. 127 (2017), no. 1, 37-79. · Zbl 1373.60115 [31] Kôsaku Yosida, Functional analysis, sixth ed. · Zbl 0126.11504 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.