×

Construction of fullerenes and Pogorelov polytopes with 5-, 6- and one 7-gonal face. (English) Zbl 1392.52006

Summary: A Pogorelov polytope is a combinatorial simple 3-polytope realizable in the Lobachevsky (hyperbolic) space as a bounded right-angled polytope. These polytopes are exactly simple 3-polytopes with cyclically 5-edge connected graphs. A Pogorelov polytope has no 3- and 4-gons and may have any prescribed numbers of \(k\)-gons, \(k \geq 7\). Any simple polytope with only 5-, 6- and at most one 7-gon is Pogorelov. For any other prescribed numbers of \(k\)-gons, \(k \geq 7\), we give an explicit construction of a Pogorelov and a non-Pogorelov polytope. Any Pogorelov polytope different from \(k\)-barrels (also known as Löbel polytopes, whose graphs are biladders on \(2 k\) vertices) can be constructed from the 5- or the 6-barrel by cutting off pairs of adjacent edges and connected sums with the 5-barrel along a 5-gon with the intermediate polytopes being Pogorelov. For fullerenes, there is a stronger result. Any fullerene different from the 5-barrel and the \((5, 0)\)-nanotubes can be constructed by only cutting off adjacent edges from the 6-barrel with all the intermediate polytopes having 5-, 6- and at most one additional 7-gon adjacent to a 5-gon. This result cannot be literally extended to the latter class of polytopes. We prove that it becomes valid if we additionally allow connected sums with the 5-barrel and 3 new operations, which are compositions of cutting off adjacent edges. We generalize this result to the case when the 7-gon may be isolated from 5-gons.

MSC:

52B05 Combinatorial properties of polytopes and polyhedra (number of faces, shortest paths, etc.)
52B10 Three-dimensional polytopes
05C75 Structural characterization of families of graphs
05C76 Graph operations (line graphs, products, etc.)
05C40 Connectivity
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ziegler, G.M.; ; Lectures on Polytopes: New York, NY, USA 2007; Volume Volume 152 . · Zbl 0823.52002
[2] Grünbaum, B.; ; Convex Polytopes: New York, NY, USA 2003; Volume Volume 221 .
[3] Buchstaber, V.M.; Erokhovets, N.Y.; Masuda, M.; Panov, T.E.; Park, S.; Cohomological rigidity of manifolds defined by 3-dimensional polytopes; Rus. Math. Surv.: 2017; Volume 72 ,199-256. · Zbl 1383.57038
[4] Buchstaber, V.M.; Erokhovets, N.Y.; Constructions of families of three-dimensional polytopes, characteristic patches of fullerenes, and Pogorelov polytopes; Izv. Math.: 2017; Volume 81 ,901-972. · Zbl 1378.05196
[5] Vesnin, A.Y.; Right-angled polyhedra and hyperbolic 3-manifolds; Rus. Math. Surv.: 2017; Volume 72 ,335-374. · Zbl 1479.52018
[6] Andreev, E.M.; On convex polyhedra in Lobachevskii spaces; Math. USSR-Sb.: 1970; Volume 10 ,413-440. · Zbl 0217.46801
[7] Birkhoff, G.D.; The Reducibility of Maps; Am. J. Math.: 1913; Volume 35 ,115-128. · JFM 44.0568.01
[8] Barnette, D.; On generation of planar graphs; Discret. Math.: 1974; Volume 7 ,199-208. · Zbl 0273.05104
[9] Barnette, D.; Generating the c∗-5-connected graphs; Isr. J. Math.: 1977; Volume 28 ,151-160. · Zbl 0377.05018
[10] Pogorelov, A.V.; A regular partition of Lobachevskian space; Math. Notes: 1967; Volume 1 ,3-5. · Zbl 0157.27203
[11] Buchstaber, V.M.; Panov, T.E.; ; Toric Topology (Mathematical Surveys and Monographs): Providence, RI, USA 2015; Volume Volume 204 .
[12] Fan, F.; Ma, J.; Wang, X.; B-Rigidity of flag 2-spheres without 4-belt; arXiv: 2015; .
[13] Buchstaber, V.M.; Erokhovets, N.Y.; Fullerenes, Polytopes and Toric Topology; Combinatorial and Toric Homotopy: Introductory Lectures of Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore: Singapore 2017; Volume Volume 35 ,67-178. · Zbl 1414.52006
[14] Vesnin, A.Y.; Three-dimensional hyperbolic manifolds of Löbell type; Siberian Math. J.: 1987; Volume 28 ,731-734. · Zbl 0657.53023
[15] Lovasz, L.; Plummer, M.D.; ; Matching Theory: Amsterdam, The Netherlands 1986; Volume Volume 29 . · Zbl 0618.05001
[16] Butler, J.W.; A generation procedure for the simple 3-polytopes with cyclically 5-connected graphs; Can. J. Math.: 1974; Volume 26 ,686-708. · Zbl 0253.05111
[17] Robertson, N.; Seymour, P.D.; Thomas, R.; Cyclically five-connected cubic graphs; J. Comb. Theory Ser. B: 2017; Volume 125 ,132-167. · Zbl 1362.05074
[18] Appel, K.; Haken, W.; Every planar map is four colorable, Part I. Discharging; Ill. J. Math.: 1977; Volume 21 ,429-490. · Zbl 0387.05009
[19] Appel, K.; Haken, W.; Koch, J.; Every planar map is four colorable, Part II. Reducibility; Ill. J. Math.: 1977; Volume 21 ,491-567. · Zbl 0387.05010
[20] Appel, K.; Haken, W.; Every planar map is four colorable, with the collaboration of D. Koch; Contemporary Mathematics: Providence, RI, USA 1989; Volume Volume 98 . · Zbl 0681.05027
[21] Dǒslić, T.; On lower bounds of number of perfect matchings in fullerene graphs; J. Math. Chem.: 1998; Volume 24 ,359-364.
[22] Fowler, P.W.; Graovac, A.; Žerovnik, J.; Pisanski, T.; ; A Generalized Ring Spiral Algorithm for Coding Fullerenes and Other Cubic Polyhedra: Ljubljana, Slovenia 1998; . · Zbl 0969.92026
[23] Buchstaber, V.M.; Erokhovets, N.Y.; Truncations of simple polytopes and applications; Proc. Steklov Inst. Math.: 2015; Volume 289 ,104-133. · Zbl 1351.51019
[24] Dǒslić, T.; Cyclical edge-connectivity of fullerene graphs and (k,6)-cages; J. Math. Chem.: 2003; Volume 33 ,103-112. · Zbl 1018.92036
[25] Qi, Z.; Zhang, H.; A note on the cyclical edge-connectivity of fullerene graphs; J. Math. Chem.: 2008; Volume 43 ,134-140. · Zbl 1139.05327
[26] Buchstaber, V.M.; Erokhovets, N.; Construction of fullerenes; arXiv: 2015; . · Zbl 1351.51019
[27] Curl, R.F.; Dawn of the fullerenes: Experiment and conjecture. Nobel lecture, 1996; Nobel Lectures: Chemistry: Singapore 2003; ,11-32.
[28] Kroto, H.W.; Symmetry, space, stars and C60. Nobel lecture, 1996; Nobel Lectures: Chemistry: Singapore 2003; ,44-79.
[29] Smalley, R.E.; Discovering the fullerenes. Nobel lecture, 1996; Nobel Lectures: Chemistry: Singapore 2003; ,89-102.
[30] Deza, M.; Dutour Sikirić, M.; Shtogrin, M.I.; Fullerenes and disc-fullerenes; Rus. Math. Surv.: 2013; Volume 68 ,665-720.
[31] Andova, V.; Kardoš, F.; Škrekovski, R.; Mathematical aspects of fullerenes; Ars Math. Contemp.: 2016; Volume 11 ,353-379.
[32] Deza, M.; Dutour Sikiric, M.; Shtogrin, M.I.; ; Geometric Structure of Chemistry-Relevant Graphs: New Delhi, India 2015; .
[33] ; The Mathematics and Topology of Fullerenes: Dordrecht, The Netherlands 2011; .
[34] Fowler, P.W.; Manolopoulos, D.E.; ; An Atlas of Fullerenes: Mineola, New York, NY, USA 2007; .
[35] Schwerdtfeger, P.; Wirz, L.; Avery, J.; The topology of fullerenes; WIREs Comput. Mol. Sci.: 2015; Volume 5 ,96-145.
[36] Thurston, W.P.; Shapes of polyhedra and triangulations of the sphere; Geom. Topol. Monogr.: 1998; Volume 1 ,511-549. · Zbl 0931.57010
[37] Vesnin, A.Y.; Volumes of hyperbolic Löbell 3-manifolds; Math. Notes: 1998; Volume 64 ,15-19.
[38] Inoue, T.; Organizing volumes of right-angled hyperbolic polyhedra; Algebr. Geom. Topol.: 2008; Volume 8 ,1523-1565. · Zbl 1146.52005
[39] Eberhard, V.; ; Zur Morphologie der Polyeder: Leipzig, Germany 1891; .
[40] Brinkmann, G.; Goetschalckx, P.; Schein, S.; Comparing the constructions of Goldberg, Fuller, Caspar, Klug and Coxeter, and a general approach to local symmetry-preserving operations; Proc. R. Soc. A: 2017; Volume 473 . · Zbl 1404.52013
[41] Inoue, T.; The 825 smallest right-angled hyperbolic polyhedra; arXiv: 2015; .
[42] Brückner, M.; ; Vielecke und Vielflache. Theorie und Geschichte: Leipzig, Germany 1900; .
[43] Steinitz, B.; Rademacher, H.; ; Vorlesungen über die Theorie der Polyeder: Berlin, Germany 1934; .
[44] Fedorov, E.S.; Foundations of morphology and systematics of polyhedra; Zap. Imperat. S.-Petersb. Mineralog. Obshch.: 1983; Volume 30 ,241-341.
[45] Kotzig, A.; Regularly connected trivalent graphs without non-trivial cuts of cardinality 3; Acta Fac. Rerum Natur. Univ. Comenian. Math. Publ.: 1969; Volume 21 ,1-14. · Zbl 0199.27301
[46] Faulkner, G.B.; Younger, D.H.; The recursive generation of cyclically k-connected cubic planar maps; Proceedings of the Twenty-Fifth Summer Meeting of the Canadian Mathematical Congress: ; ,349-356. · Zbl 0327.05114
[47] Volodin, V.D.; Combinatorics of flag simplicial 3-polytopes; Rus. Math. Surv.: 2015; Volume 70 ,168-170. · Zbl 1330.52016
[48] Buchstaber, V.M.; Erokhovets, N.Y.; Finite sets of operations sufficient to construct any fullerene from C20; Struct. Chem.: 2017; Volume 28 ,225-234.
[49] Hasheminezhad, M.; Fleischner, H.; McKay, B.D.; A universal set of growth operations for fullerenes; Chem. Phys. Lett.: 2008; Volume 464 ,118-121.
[50] Endo, M.; Kroto, H.W.; Formation of carbon nanofibers; J. Phys. Chem.: 1992; Volume 96 ,6941-6944.
[51] Brinkmann, G.; Graver, J.E.; Justus, C.; Numbers of faces in disordered patches; J. Math. Chem.: 2009; Volume 45 ,263-278. · Zbl 1260.92125
[52] Kardoš, F.; Škrekovski, R.; Cyclic edge-cuts in fullerene graphs; J. Math. Chem.: 2008; Volume 44 ,121-132.
[53] Kutnar, K.; Marušič, D.; On cyclic edge-connectivity of fullerenes; Discret. Appl. Math.: 2008; Volume 156 ,1661-1669. · Zbl 1152.05341
[54] Grünbaum, B.; Some analogues of Eberhard’s theorem on convex polytopes; Isr. J. Math.: 1968; Volume 6 ,398-411.
[55] Buckminster Fuller, R.; Marks, R.W.; ; The Dymaxion World of Buckminster Fuller: New York, NY, USA 1973; .
[56] Goldberg, M.; The Isoperimetric Problem for Polyhedra; Tohoku Math. J.: 1935; Volume 40 ,226-236. · Zbl 0010.41004
[57] Goldberg, M.; A Class of Multi-Symmetric Polyhedra; Tohoku Math. J.: 1937; Volume 43 ,104-108. · JFM 63.0585.04
[58] Caspar, D.L.D.; Klug, A.; Physical principles in the construction of regular viruses; Cold Spring Harb. Symp. Quant. Biol.: 1962; Volume 27 ,1-24.
[59] Coxeter, H.S.M.; Virus macromolecules and geodesic domes; A Spectrum of Mathematics: Essays Presented to H.G. Forder: Auckland, New Zealand 1971; ,98-107.
[60] Grünbaum, B.; Motzkin, T.S.; The number of hexagons and the simplicity of geodesics on certain polyhedra; Can. J. Math.: 1963; Volume 15 ,744-751. · Zbl 0121.37605
[61] Manolopoulos, D.E.; May, J.C.; Down, S.E.; Theoretical studies of the fullerenes: C34 to C70; Chem. Phys. Lett.: 1991; Volume 181 ,105-111.
[62] Manolopoulos, D.E.; Fowler, P.W.; A fullerene without a spiral; Chem. Phys. Lett.: 1993; Volume 204 ,1-7.
[63] Brinkmann, G.; Problems and Scope of the Spiral Algorithm and Spiral Codes for Polyhedral Cages; Chem. Phys. Lett.: 1997; Volume 272 ,193-198.
[64] Wirz, L.N.; Schwerdtfeger, P.; Avery, J.E.; Naming Polyhedra by General Face-Spirals—Theory and Applications to Fullerenes and other Polyhedral Molecules; Fuller. Nanotub. Carbon Nanostruct.: 2017; .
[65] Schwerdtfeger, P.; Wirz, L.; Avery, J.; Program Fullerene—A Software Package for Constructing and Analyzing Structures of Regular Fullerenes; J. Comput. Chem.: 2013; Volume 34 ,1508-1526.
[66] Brinkmann, G.; Dress, A.W.M.; A constructive enumeration of fullerenes; J. Algorithms: 1997; Volume 23 ,345-358.
[67] Brinkmann, G.; McKay, B.D.; Fast generation of planar graphs; MATCH Commun. Math. Comput. Chem.: 2008; Volume 58 ,323-357. · Zbl 1164.68025
[68] Brinkmann, G.; Franceus, D.; Fowler, P.W.; Graver, J.E.; Growing fullerenes from seed: Growth transformations of fullerene polyhedra; Chem. Phys. Lett.: 2006; Volume 428 ,386-393.
[69] Brinkmann, G.; Goedgebeur, J.; McKay, B.D.; The Generation of Fullerenes; J. Chem. Inf. Model.: 2012; Volume 52 ,2910-2918.
[70] Brinkmann, G.; Coolsaet, K.; Goedgebeur, J.; Mélot, H.; House of Graphs: A database of interesting graphs; Discret. Appl. Math.: 2013; Volume 161 ,311-314. · Zbl 1292.05254
[71] Myrvold, W.; Bultena, B.; Daugherty, S.; Debroni, B.; Girn, S.; Minchenko, M.; Woodcock, J.; Fowler, P.W.; FuiGui: A graphical user interface for investigating conjectures about fullerenes; MATCH Commun. Math. Comput. Chem.: 2007; Volume 58 ,403-422. · Zbl 1150.92365
[72] Brinkmann, G.; Delgado Friedrichs, O.; Lisken, S.; Peeters, A.; Van Cleemput, N.; CaGe—A Virtual Environment for Studying Some Special Classes of Plane Graphs—An Update; MATCH Commun. Math. Comput. Chem.: 2010; Volume 63 ,533-552.
[73] Kardoš, F.; Krnc, M.; Lužar, B.; Škrekovski, R.; Cyclic 7-edge-cuts in fullerene graphs; J. Math. Chem: 2010; Volume 47 ,771-789.
[74] Brinkmann, G.; McKay, B.D.; Construction of planar triangulations with minimum degree 5; Discret. Math.: 2005; Volume 301 ,147-163. · Zbl 1078.05022
[75] Aldred, E.R.L.; Holton, D.A.; Jackson, B.; Uniform cyclic edge connectivity in cubic graphs; Combinatorica: 1991; Volume 11 ,81-96. · Zbl 0759.05057
[76] McCuaig, W.; Edge-reductions in cyclically k-connected cubic graphs; J. Combin. Theory Ser. B: 1992; Volume 56 ,16-44. · Zbl 0711.05030
[77] Coolsaet, K.; Fowler, P.W.; Goedgebeur, J.; Generation and properties of nut graphs; arXiv: 2017; .
[78] Khaksari, A.; Hakimi-Nezhaad, M.; Ori, O.; Ghorbani, M.; A survey of the automorphism groups of some fulleroids; Fuller. Nanotub. Carbon Nanostruct.: 2018; Volume 26 ,80-86.
[79] Deza, M.; Fowler, P.W.; Rassat, A.; Rogers, K.M.; Fullerenes as Tilings of Surfaces; J. Chem. Inf. Comput. Sci.: 2000; Volume 40 ,550-558.
[80] Gan, L.-H.; Lei, D.; Fowler, P.W.; Structural interconnections and the role of heptagonal rings in endohedral trimetallic nitride template fullerenes; J. Comput. Chem.: 2016; Volume 37 ,1907-1913.
[81] Hernández, E.; Ordejón, P.; Terrones, H.; Fullerene growth and the role of nonclassical isomers; Phys. Rev. B: 2001; Volume 63 ,193403.
[82] Huang, J.Y.; Ding, F.; Jiao, K.; Yakobson, B.I.; Real Time Microscopy, Kinetics, and Mechanism of Giant Fullerene Evaporation; Phys. Rev. Lett.: 2007; Volume 99 ,175503.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.