×

On high-frequency limits of \(U\)-statistics in Besov spaces over compact manifolds. (English) Zbl 1392.60006

Authors’ abstract: “In this paper, quantitative bounds in high-frequency central limit theorems are derived for Poisson based \(U\)-statistics of arbitrary degree built by means of wavelet coefficients over compact Riemannian manifolds. The wavelets considered here are the so-called needlets, characterized by strong concentration properties and by an exact reconstruction formula. Furthermore, we consider Poisson point processes over the manifold such that the density function associated to its control measure lives in a Besov space. The main findings of this paper include new rates of convergence that depend strongly on the degree of regularity of the control measure of the underlying Poisson point process, providing a refined understanding of the connection between regularity and speed of convergence in this framework.”
The paper is very large structured in 5 chapters: 1. Introduction – 1.1. Motivations and overview of the literature – 1.2. Framework and main results – 1.2.1. Main results: Poissonized case – 1.2.2. Main results: De-Poissonized case – 1.3. Applications to cosmology – 1.3.1. Global thresholding – 1.3.2. Point sources detection – 1.4. Plan of paper. 2. Preliminaries – 2.1. Poisson random measures and \(U\)-statistics – 2.2. Stein-Malliavin bounds – 2.3. Needlets on compact manifolds – 2.4. Besov spaces on compact manifolds. 3. Main results – 4. Some interpretations and comparisons with other results – 5. Auxiliary results.

MSC:

60B05 Probability measures on topological spaces
60F05 Central limit and other weak theorems
60G57 Random measures
62E20 Asymptotic distribution theory in statistics

References:

[1] M. Axelsson, H. T. Ihle, S. Scodeller and F. K. Hansen, Testing for foreground residuals in the Planck foreground cleaned maps: A new method for designing confidence masks, A&A 5788, (2015).
[2] P. Baldi, G. Kerkyacharian, D. Marinucci and D. Picard, Adaptive density estimation for directional data using needlets, Ann. Statist. 37 (2009), no. 6A, 3362-3395. · Zbl 1369.62061 · doi:10.1214/09-AOS682
[3] P. Baldi, G. Kerkyacharian, D. Marinucci and D. Picard, Asymptotics for spherical needlets, Ann. Statist. 37 (2009), 1150-1171. · Zbl 1160.62087 · doi:10.1214/08-AOS601
[4] J. Bobin, J.-L. Starck and S. Basak, Sparse component separation for accurate cmb map estimation, A&A 550, (2013).
[5] S. Bourguin and C. Durastanti, On normal approximations for the two-sample problem on multidimensional tori, to appear in J. Statist. Plann. Inference (2018). · Zbl 1393.60027
[6] S. Bourguin, C. Durastanti, D. Marinucci and G. Peccati, Gaussian approximations of nonlinear statistics on the sphere, J. Math. Anal. Appl. 436 (2016), 1121-1148. · Zbl 1383.60024
[7] S. Bourguin and G. Peccati, A portmanteau inequality on the Poisson space, Electron. J. Probab. 19 (2014), 1-42. · Zbl 1316.60089
[8] P. Cabella and D. Marinucci, Statistical challenges in the analysis of cosmic microwave background radiation, Ann. Appl. Stat. 2 (2009), 61-95. · Zbl 1160.62097
[9] V. Cammarota and D. Marinucci, On the limiting behaviour of needlets polyspectra, Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015), 1159-1189. · Zbl 1325.60014 · doi:10.1214/14-AIHP609
[10] S. Dodelson, Modern cosmology, Academic Press, San Diego, 2003.
[11] C. Durastanti, Adaptive global thresholding on the sphere, J. Multivariate Anal. 151 (2016), 110-132. · Zbl 1346.62074
[12] C. Durastanti, Quantitative central limit theorems for M exican needlet coefficients on circular Poisson fields, Stat. Methods Appl. 25 (2016), no. 4, 651-673. · Zbl 1359.60037 · doi:10.1007/s10260-016-0352-0
[13] C. Durastanti, X. Lan and D. Marinucci, Gaussian semiparametric estimates on the unit sphere, Bernoulli 20 (2014), 28-77. · Zbl 1400.62111
[14] C. Durastanti, D. Marinucci and G. Peccati, Normal approximations for wavelet coefficients on spherical Poisson fields, J. Math. Anal. Appl. 409 (2014), 212-227. · Zbl 1306.42056 · doi:10.1016/j.jmaa.2013.06.028
[15] D. Geller and D. Marinucci, Spin wavelets on the sphere, J. Fourier Anal. Appl. 16 (2010), 840-884. · Zbl 1206.42039
[16] D. Geller and D. Marinucci, Mixed needlets, J. Math. Anal. Appl. 375 (2011), 610-630. · Zbl 1213.42137
[17] D. Geller and A. Mayeli, Besov spaces and frames on compact manifolds, Indiana Univ. Math. J. 58 (2009), 2003-2042. · Zbl 1187.46027 · doi:10.1512/iumj.2009.58.3741
[18] D. Geller and A. Mayeli, Continuous wavelets on manifolds, Math. Z. 262 (2009), 895-927. · Zbl 1193.42123
[19] D. Geller and A. Mayeli, Nearly tight frames and space-frequency analysis on compact manifolds, Math. Z. 263 (2009), 235-264. · Zbl 1193.42124
[20] D. Geller and I. Pesenson, Band-limited localized Parseval frames and Besov spaces on compact homogeneous manifolds, J. Geom. Anal. 21 (2011), 334-371. · Zbl 1216.43004
[21] T. Ghosh, J. Delabrouille, M. Remazeilles, J.-F. Cardoso and T. Souradeep, Foreground maps in wmap frequency bands, Mon. Not. R. Astron. Soc. 412 (2011), 883-899.
[22] W. Hardle, G. Kerkyacharian, D. Picard and A. Tsybakov, Wavelets, approximations and statistical applications, Springer, Berlin, 1997. · Zbl 0899.62002
[23] V. Hoeffding, A class of statistics with asymptotically normal distribution, Ann. Math. Stat. 19 (1948), 293-325. · Zbl 0032.04101
[24] G. Kerkyacharian, R. Nickl and D. Picard, Concentration inequalities and confidence bands for needlet density estimators on compact homogeneous manifolds, Probab. Theory Related Fields 153 (2012), 363-404. · Zbl 06062621
[25] R. Lachieze-Rey and G. Peccati, Fine Gaussian fluctuations on the Poisson space, I: Contractions, cumulants and geometric random graphs, Electron. J. Probab. 18 (2013), 1-32. · Zbl 1295.60015
[26] M. Ledoux, Chaos of a Markov operator and the fourth moment condition, Ann. Probab. 40 (2012), 2439-2459. · Zbl 1266.60042
[27] A. J. Lee, U-statistics: Theory and practice, Mathematics and Its Applications., vol. 465, Marcel Dekker, Inc., New York, 1990. · Zbl 0771.62001
[28] D. Marinucci and G. Peccati, Random fields on the sphere: Representations, limit theorems and cosmological applications, Cambridge University Press, Cambridge, 2011. · Zbl 1260.60004
[29] F. J. Narcowich, P. Petrushev and J. D. Ward, Decomposition of Besov and Triebel-Lizorkin spaces on the sphere, J. Funct. Anal. 238 (2006), 530-564. · Zbl 1114.46026
[30] F. J. Narcowich, P. Petrushev and J. D. Ward, Localized tight frames on spheres, SIAM J. Math. Anal. 38 (2006), 574-594. · Zbl 1143.42034
[31] I. Nourdin and G. Peccati, Stein’s method on Wiener chaos, Probab. Theory Related Fields 145 (2009), 75-118. · Zbl 1175.60053 · doi:10.1007/s00440-008-0162-x
[32] G. Peccati, J.-L. Solé, M. S. Taqqu and F. Utzet, Stein’s method and normal approximation of Poisson functionals, Ann. Probab. 38 (2010), 443-478. · Zbl 1195.60037
[33] G. Peccati and M. S. Taqqu, Wiener chaos: Moments, cumulants and diagrams: A survey with computer implementation, Bocconi & Springer Series, vol. 1, Springer, Milan, 2011. · Zbl 1231.60003
[34] G. Peccati and C. Zheng, Multi-dimensional Gaussian fluctuations on the Poisson space, Electron. J. Probab. 15 (2010), 1487-1527. · Zbl 1228.60031
[35] I. Z. Pesenson, Multiresolution analysis on compact Riemannian manifolds, Multiscale analysis and nonlinear dynamics, Rev. Nonlinear Dyn. Complex, Wiley-VCH, Weinheim, 2013, pp. 65-82.
[36] D. Pietrobon, P. Cabella, A. Balbi, G. De Gasperis and N. Vittorio, Constraints on primordial non-gaussianity from a needlet analysis of the wmap-5 data, Mon. Not. R. Astron. Soc. 396 (2009), 1682-1688.
[37] N. Privault, Stochastic analysis in discrete and continuous settings with normal martingales, Lecture Notes in Mathematics, vol. 1982, Springer-Verlag, Berlin, 2009. · Zbl 1185.60005
[38] M. Reitzner and M. Schulte, Central limit theorems for \(u\)-statistics of Poisson point processes, Ann. Probab. 41 (2013), 3879-3909. · Zbl 1293.60061 · doi:10.1214/12-AOP817
[39] S. Scodeller, O. Rudjord, F. K. Hansen, D. Marinucci, D. Geller and A. Mayeli, Introducing Mexican needlets for cmb analysis: Issues for practical applications and comparison with standard needlets, Astrophys. J. 733, (2011).
[40] A. W. van der Vaart, Asymptotic statistics, Cambridge, 1998. · Zbl 0910.62001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.