×

zbMATH — the first resource for mathematics

A Lax pair structure for the half-wave maps equation. (English) Zbl 1393.37074
Summary: We consider the half-wave maps equation \[ \partial_t \vec{S} = \vec{S} \wedge| \nabla| \vec{S}, \] where \(\vec{S}= \vec{S}(t,x)\) takes values on the two-dimensional unit sphere \(\mathbb S^2\) and \(x \in \mathbb R\) (real line case) or \(x \in \mathbb T\) (periodic case). This an energy-critical Hamiltonian evolution equation recently introduced in [E. Lenzmann and A. Schikorra, Invent. Math. 213, No. 1, 1–82 (2018; Zbl 1411.35208)], [T. Zhou and M. Stone, Phys. Lett., A 379, No. 43–44, 2817–2825 (2015; Zbl 1349.37076)] which formally arises as an effective evolution equation in the classical and continuum limit of Haldane-Shastry quantum spin chains. We prove that the half-wave maps equation admits a Lax pair and we discuss some analytic consequences of this finding. As a variant of our arguments, we also obtain a Lax pair for the half-wave maps equation with target \(\mathbb H^2\) (hyperbolic plane).

MSC:
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
37K05 Hamiltonian structures, symmetries, variational principles, conservation laws (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Bugiera, L., Lenzmann, E.: work in preparation
[2] Lio, F; Rivière, T, Three-term commutator estimates and the regularity of \(\frac{1}{2}\)-harmonic maps into spheres, Anal. PDE, 4, 149-190, (2011) · Zbl 1241.35035
[3] Faddeev, L.D., Takhtajan, L.A.: Hamitonian methods in the theory of solitons. Classics in Mathematics, Springer, Berlin (2007) · Zbl 1111.37001
[4] Fröhlich, J; Knowles, A; Lenzmann, E, Semi-classical dynamics in quantum spin systems, Lett. Math. Phys., 82, 275-296, (2007) · Zbl 1189.82078
[5] Gérard, P., Grellier, S.: The cubic Szegő equation and Hankel operators, Astérique 389, Société Mathématique de France (2017) · Zbl 1410.37001
[6] Haldane, FDM, Exact jastrow-gutzwiller resonating-valence-bond ground state of the spin-(1/2 antiferromagnetic Heisenberg chain with 1/\({\rm r}^{2}\) exchange, Phys. Rev. Lett., 60, 635-638, (1988)
[7] Lakshmanan, M, Continuum spin system as an exactly solvable dynamical system, Phys. Lett. A, 61, 53-54, (1977)
[8] Lenzmann, E., Schikorra, A.: On energy-critical half-wave maps into \(\mathbb{S}^2\), preprint (2017). arXiv:1702.05995v2 · Zbl 1411.35208
[9] Lieb, EH, The classical limit of quantum spin systems, Commun. Math. Phys., 31, 327-340, (1973) · Zbl 1125.82305
[10] Peller, V.V.: Hankel operators of class \(S_p\) and their applications (rational approximation, Gaussian processes, the problem of majorization of operators). Mat. Sb. 113(155) (1980), no. 4(12), 538581, 637
[11] Peller, V.V.: Hankel Operators and their Applications Springer Monographs in Mathematics. Springer, New York (2003)
[12] Pocovnicu, O, Explicit formula for the solution of the Szegő equation on the real line and applications, Discrete Contin. Dyn. Syst., 31, 607-649, (2011) · Zbl 1235.35263
[13] Shastry, BS, Exact solution of an S \(=\) 1/2 Heisenberg antiferromagnetic chain with long-ranged interactions, Phys. Rev. Lett., 60, 639-642, (1988)
[14] Sutherland, B.: Beautiful Models: 70 Years of Exactly Solved Quantum Many-Body Problems. World Scientific, Singapore (2004) · Zbl 1140.82016
[15] Takhtajan, LA, Integration of the continuous Heisenberg spin chain through the inverse scattering method, Phys. Lett. A, 64, 235-237, (1977)
[16] Zhou, T; Stone, M, Solitons in a continuous classical Haldane-shastry spin chain, Phys. Lett. A, 379, 2817-2825, (2015) · Zbl 1349.37076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.