Arithmetic of Mori domains and monoids: the global case. (English) Zbl 1394.20035

Chapman, Scott (ed.) et al., Multiplicative ideal theory and factorization theory. Commutative and non-commutative perspectives. Selected papers based on the presentations at the meeting ‘Arithmetic and ideal theory of rings and semigroups’, Graz, Austria, September 22–26, 2014. Cham: Springer (ISBN 978-3-319-38853-3/hbk; 978-3-319-38855-7/ebook). Springer Proceedings in Mathematics & Statistics 170, 183-218 (2016).
Summary: In [A. Geroldinger and W. Hassler, J. Algebra 319, No. 8, 3419–3463 (2008; Zbl 1195.13022)] the class of weakly C-monoid has been introduced. We continue to study their arithmetic and give more examples of such monoids.
For the entire collection see [Zbl 1346.13002].


20M13 Arithmetic theory of semigroups
13A05 Divisibility and factorizations in commutative rings
13F05 Dedekind, Prüfer, Krull and Mori rings and their generalizations
13F15 Commutative rings defined by factorization properties (e.g., atomic, factorial, half-factorial)


Zbl 1195.13022
Full Text: DOI


This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.