×

Construction of diffusions on current groups. (English. Russian original) Zbl 1394.58019

Sb. Math. 209, No. 1, 71-95 (2018); translation from Mat. Sb. 209, No. 1, 74-99 (2018).
The author considers the group \(C\left( M, G \right)\) of continuous mappings of a smooth connected compact Riemannian manifold \(M\) into a compact Lie group \(G\). This group is sometimes referred to as a current group. The main claim of the paper is a construction of a diffusion process on \(C\left( M, G \right)\) as a solution to a martingale problem. The techniques used include Prokhorov’s theorem and estimates for the modulus of continuity of random processes by using a method called chaining.
Reviewer’s remarks: Besides some minor issues such as using the Peter-Weyl theorem in Section 3.1 to claim that \(G\) can be taken as a matrix Lie group, the main construction seems to be going back to the case when \(M\) is an interval or a half-line starting from p. 75, without ever saying it clearly. One of the main results of the paper, Theorem 2, uses a process labelled by time \(t\) from a finite interval (going back to Equation (3.3)), then \(t\) suddenly becomes an element of \(M\). Not to mention that the term stochastic exponential usually is used for a different object than the one in the 1984 paper by Hakim-Dowek and Lépingle cited in the article.

MSC:

58J65 Diffusion processes and stochastic analysis on manifolds
60J60 Diffusion processes
22E67 Loop groups and related constructions, group-theoretic treatment
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text: DOI

References:

[1] M.-P. Malliavin and P. Malliavin 1990 Integration on loop groups. I. Quasi invariant measures J. Funct. Anal.93 1 207-237 · Zbl 0715.22024
[2] J. B. Epperson and T. M. Lohrenz 1993 Brownian motion and the heat semigroup on the path space of a compact Lie group Pacific J. Math.161 2 233-253 · Zbl 0788.60017
[3] P. Malliavin 1990 Hypoellipticity in infinite dimensions Diffusion processes and related problems in analysisEvanston, IL 1989 Progr. Probab. 22, 1 Birkhäuser Boston, Boston, MA 17-31 · Zbl 0723.60059
[4] Y. Inahama 2003 Convergence of finite dimensional distributions of heat kernel measures on loop groups J. Funct. Anal.198 2 311-340 · Zbl 1018.60060
[5] R. Léandre 2003 Brownian surfaces with boundary and Deligne cohomology Rep. Math. Phys.52 3 353-362 · Zbl 1052.60063
[6] M. Cecil and B. K. Driver 2008 Heat kernel measure on loop and path groups Infin. Dimens. Anal. Quantum Probab. Relat. Top.11 2 135-156 · Zbl 1154.58019
[7] B. K. Driver 1997 Integration by parts and quasi-invariance for heat kernel measures on loop groups J. Funct. Anal.149 2 470-547 · Zbl 0887.58062
[8] Z. Brzeźniak and A. Carroll 2003 Approximations of the Wong-Zakai type for stochastic differential equations in M-type 2 Banach spaces with applications to loop spaces Séminaire de Probabilités XXXVII Lecture Notes in Math. 1832 Springer, Berlin 251-289 · Zbl 1040.60047
[9] Y. Inahama and H. Kawabi 2006 Large deviations for heat kernel measures on loop spaces via rough paths J. London Math. Soc. (2)73 3 797-816 · Zbl 1133.60006
[10] M. Talagrand 2014 Upper and lower bounds for stochastic processes. Modern methods and classical problems Ergeb. Math. Grenzgeb. (3) 60 Springer, Heidelberg xvi+626 pp. · Zbl 1293.60001
[11] B. K. Driver and M. Röckner 1992 Construction of diffusions on path and loop spaces of compact Riemannian manifolds C. R. Acad. Sci. Paris Sér. I Math.315 5 603-608 · Zbl 0771.58047
[12] J. R. Norris 1995 Twisted sheets J. Funct. Anal.132 2 273-334 · Zbl 0848.60055
[13] J. B. Epperson and T. Lohrenz 1994 Diffusions on finite-energy loop spaces Soochow J. Math.20 1 113-136 · Zbl 0804.58058
[14] O. Kallenberg 2002 Foundations of modern probability Probab. Appl. (N. Y.) Springer, New York 2nd ed., xx+638 pp. · Zbl 0996.60001
[15] G. Da Prato and J. Zabczyk 2014 Stochastic equations in infinite dimensions Encyclopedia Math. Appl. 152 Cambridge Univ. Press, Cambridge 2nd ed., xviii+493 pp.
[16] B. I. Mamporia 1986 Wiener processes and stochastic integrals in a Banach space Probab. Math. Statist.7 1 59-75 · Zbl 0617.60007
[17] G. R. Shorack and J. A. Wellner 1986 Empirical processes with applications to statistics Wiley Ser. Probab. Math. Statist. Probab. Math. Statist. John Wiley & Sons, Inc., New York xxxviii+938 pp. · Zbl 1170.62365
[18] J. van Neerven, M. Veraar and L. Weis 2015 Stochastic integration in Banach spaces – a survey Stochastic analysis: a series of lectures Progr. Probab. 68 Birkhäuser/Springer, Basel 297-332 · Zbl 1333.60115
[19] E. Dettweiler 1983 Banach space valued processes with independent increments and stochastic integration Probability in Banach spaces IVOberwolfach 1982 Lecture Notes in Math. 990 Springer, Berlin-New York 54-83 · Zbl 0514.60010
[20] A. A. Kalinichenko An approach to stochastic integration in general separable Banach spaces Potential Anal. Submitted
[21] M. Hakim-Dowek and D. Lépingle 1986 L’exponentielle stochastique des groupes de Lie Séminaire de Probabilités XXStrasbourg 1984/85 Lecture Notes in Math. 1204 Springer, Berlin 352-374 · Zbl 0609.60009
[22] L. Gross 1994 Analysis on loop groups Stochastic analysis and applications in physicsFunchal 1993 NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 449 Kluwer Acad. Publ., Dordrecht 99-118
[23] J. L. Kelley 1955 General topology D. Van Nostrand Company, Inc., Toronto-New York-London xiv+298 pp. · Zbl 0066.16604
[24] M. Ondreját 2007 Integral representations of cylindrical local martingales in every separable Banach space Infin. Dimens. Anal. Quantum Probab. Relat. Top.10 3 365-379 · Zbl 1146.60042
[25] N. Ikeda and S. Watanabe 1981 Stochastic differential equations and diffusion processes North-Holland Math. Library 24 North-Holland Publishing Co., Amsterdam-New York, Kodansha, Ltd., Tokyo xiv+464 pp. · Zbl 0495.60005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.