×

Shutkas for reductive groups and global Langlands parametrization. (Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale.) (French. English summary) Zbl 1395.14017

In this article the global Langlands correspondence for reductive groups over a function field is proved in the direction from automorphic representations to Galois representations. Let \(X\) be a smooth projective curve over \({\mathbb F}_q\), geometrically irreducible, with function field \(F\). Let \(G\) be a connected reductive group over \(F\). Considered are cusp forms on \(G({\mathbb A})\) with values in a finite extension of \({\mathbb Q}_l\).
Using the cohomology of \(G\)-shtukas the author constructs “excursion” operators on spaces of cusp forms, commuting with Hecke operators. Considering commutative algebras generated by excursion operators one obtains a decomposition of the space of cusp forms. An application of the geometric Satake equivalence makes the decomposition canonical. This decomposition is indexed by certain \(\hat {G}\)-conjugacy classes of morphisms \(\text{Gal}(\bar{F}/F)\rightarrow \,^L\!G\), which are proved to be the Langlands parameters (\(\hat{G}\) and \(^L\!G\) are taken over \(\bar{{\mathbb Q}}_l\)).
In the introduction the proof is sketched under the assumption that \(G\) is split over \({\mathbb F}_q\) (30 pages). The complete proof also is first given for split \(G\) and after that the changes to be made in the general case are discussed.
The proof is independent of the Arthur-Selberg trace formula.

MSC:

14G35 Modular and Shimura varieties
14H60 Vector bundles on curves and their moduli
11F70 Representation-theoretic methods; automorphic representations over local and global fields
22E55 Representations of Lie and linear algebraic groups over global fields and adèle rings
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Rev\^etements \'etales et groupe fondamental (SGA 1), Documents Math\'ematiques (Paris) [Mathematical Documents (Paris)] 3, xviii+327 pp. (2003), Soci\'et\'e Math\'ematique de France, Paris
[2] Th\'eorie des topos et cohomologie \'etale des sch\'emas. Tome 3, Lecture Notes in Mathematics, Vol. 305, vi+640 pp. (1973), Springer-Verlag, Berlin-New York
[3] Cohomologie \(l\)-adique et fonctions \(L\), Lecture Notes in Mathematics, Vol. 589, xii+484 pp. (1977), Springer-Verlag, Berlin-New York
[4] Arasteh Rad, Esmail; Hartl, Urs, Uniformizing The Moduli Stacks of Global G-Shtukas · Zbl 1298.14005
[5] Arthur, James, Unipotent automorphic representations: conjectures, Ast\'erisque, 171-172, 13-71 (1989) · Zbl 0728.22014
[6] Badulescu, Alexandru Ioan; Roche, Philippe, Global Jacquet-Langlands correspondence for division algebras in characteristic \(p\), Int. Math. Res. Not. IMRN, 7, 2172-2206 (2017) · Zbl 1405.11064
[7] Bate, Michael; Martin, Benjamin; R\"ohrle, Gerhard, A geometric approach to complete reducibility, Invent. Math., 161, 1, 177-218 (2005) · Zbl 1092.20038
[8] Beauville, Arnaud; Laszlo, Yves, Un lemme de descente, C. R. Acad. Sci. Paris S\'er. I Math., 320, 3, 335-340 (1995) · Zbl 0852.13005
[9] Behrend, Kai, The Lefschetz trace formula for the moduli stack of principal bundles, 148 pp. (1991), ProQuest LLC, Ann Arbor, MI
[10] Behrend, Kai, Moduli spaces for vector bundles with level structures on algebraic curves. Diplomarbeit, non published, 1996. Summary available
[11] Beilinson, Alexander; Bernstein, Joseph; Deligne, Pierre, Faisceaux pervers. Analysis and topology on singular spaces, I, Luminy, 1981, Ast\'erisque 100, 5-171 (1982), Soc. Math. France
[12] Beilinson, Alexander; Drinfeld, Vladimir, Quantization of Hitchin’s integrable system and Hecke eigensheaves (1999)
[13] Beilinson, Alexander; Drinfeld, Vladimir, Chiral algebras, American Mathematical Society Colloquium Publications 51, vi+375 pp. (2004), American Mathematical Society, Providence, RI · Zbl 1138.17300
[14] Beilinson, Alexander, Langlands parameters for Heisenberg modules. Studies in Lie theory, Progr. Math. 243, 51-60 (2006), Birkh\"auser Boston, Boston, MA · Zbl 1195.17020
[15] Bella\`“\i che, Jo\'”el; Chenevier, Ga\`“etan, Families of Galois representations and Selmer groups, Ast\'”erisque, 324, xii+314 pp. (2009) · Zbl 1192.11035
[16] Bezrukavnikov, Roman; Finkelberg, Michael, Equivariant Satake category and Kostant-Whittaker reduction, Mosc. Math. J., 8, 1, 39-72, 183 (2008) · Zbl 1205.19005
[17] Blasius, Don, On multiplicities for \({\rm SL}(n)\), Israel J. Math., 88, 1-3, 237-251 (1994) · Zbl 0826.11023
[18] Blasius, Don; Rogawski, Jonathan D., Zeta functions of Shimura varieties. Motives, Seattle, WA, 1991, Proc. Sympos. Pure Math. 55, 525-571 (1994), Amer. Math. Soc., Providence, RI · Zbl 0827.11033
[19] B\"ockle, Gebhard; Harris, Michael; Khare, Chandrashekhar; Thorne, Jack, \( \widehat G\)-local systems on smooth projective curves are potentially automorphic. (2016) · Zbl 1437.11078
[20] Borel, Armand, Automorphic \(L\)-functions. Automorphic forms, representations and \(L\)-functions, Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977, Proc. Sympos. Pure Math., XXXIII, 27-61 (1979), Amer. Math. Soc., Providence, R.I.
[21] Borel, Armand, Linear algebraic groups, Graduate Texts in Mathematics 126, xii+288 pp. (1991), Springer-Verlag, New York · Zbl 0726.20030
[22] Borel, Armand; Jacquet, Herv\'e, Automorphic forms and automorphic representations. Automorphic forms, representations and \(L\)-functions, Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977, Proc. Sympos. Pure Math., XXXIII, 189-207 (1979), Amer. Math. Soc., Providence, R.I.
[23] Bourbaki, N., \'El\'ements de math\'ematique. Alg\`ebre. Chapitre 8. Modules et anneaux semi-simples, x+489 pp. (2012), Springer, Berlin · Zbl 1245.16001
[24] Bruhat, Fran\c cois; Tits, Jacques, Groupes r\'eductifs sur un corps local. II. Sch\'emas en groupes. Existence d’une donn\'ee radicielle valu\'ee, Inst. Hautes \'Etudes Sci. Publ. Math., 60, 197-376 (1984) · Zbl 0597.14041
[25] Braverman, Alexander; Gaitsgory, Dennis, Geometric Eisenstein series, Invent. Math., 150, 2, 287-384 (2002) · Zbl 1046.11048
[26] Braverman, Alexander; Varshavsky, Yakov, From automorphic sheaves to the cohomology of the moduli spaces of \(F\)-bundles (2006)
[27] Buzzard, Kevin; Gee, Toby, The conjectural connections between automorphic representations and Galois representations. Automorphic forms and Galois representations. Vol. 1, London Math. Soc. Lecture Note Ser. 414, 135-187 (2014), Cambridge Univ. Press, Cambridge · Zbl 1377.11067
[28] Cartier, Pierre, Representations of \(p\)-adic groups: a survey. Automorphic forms, representations and \(L\)-functions, Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977, Proc. Sympos. Pure Math., XXXIII, 111-155 (1979), Amer. Math. Soc., Providence, R.I.
[29] Chenevier, Ga\`“etan, Repr\'”esentations galoisiennes automorphes et cons\'equences arithm\'etiques des conjectures de Langlands et Arthur. Habilitation \`a diriger des recherches, (2013)
[30] Chenevier, Ga\"etan, The \(p\)-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings. Automorphic forms and Galois representations. Vol. 1, London Math. Soc. Lecture Note Ser. 414, 221-285 (2014), Cambridge Univ. Press, Cambridge · Zbl 1350.11063
[31] Chandler, Bruce; Magnus, Wilhelm, The history of combinatorial group theory, Studies in the History of Mathematics and Physical Sciences 9, viii+234 pp. (1982), Springer-Verlag, New York · Zbl 0498.20001
[32] Cvitanovi\'c, Predrag, Group theory, xiv+273 pp. (2008), Princeton University Press, Princeton, NJ · Zbl 1152.22001
[33] Cogdell, James W.; Piatetski-Shapiro, Ilya I., Converse theorems for \({\rm GL}_n\), Inst. Hautes \'Etudes Sci. Publ. Math., 79, 157-214 (1994) · Zbl 0814.11033
[34] Deligne, Pierre, Formes modulaires et repr\'esentations \(l\)-adiques. S\'eminaire Bourbaki. Vol. 1968/69: Expos\'es 347-363, Lecture Notes in Math. 175, Exp. No. 355, 139-172 (1971), Springer, Berlin
[35] Deligne, Pierre, La conjecture de Weil. II, Inst. Hautes \'Etudes Sci. Publ. Math., 52, 137-252 (1980) · Zbl 0456.14014
[36] Deligne, Pierre, Cat\'egories tannakiennes. The Grothendieck Festschrift, Vol. II, Progr. Math. 87, 111-195 (1990), Birkh\"auser Boston, Boston, MA
[37] Deligne, Pierre, Finitude de l’extension de \(\mathbb{Q}\) engendr\'ee par des traces de Frobenius, en caract\'eristique finie, Mosc. Math. J., 12, 3, 497-514, 668 (2012) · Zbl 1260.14022
[38] Drinfeld, Vladimir, Langlands’ conjecture for \({\rm GL}(2)\) over functional fields. Proceedings of the International Congress of Mathematicians (Helsinki, 1978), 565-574 (1980), Acad. Sci. Fennica, Helsinki
[39] Drinfeld, Vladimir, Moduli varieties of \(F\)-sheaves, Funktsional. Anal. i Prilozhen.. Func. Anal. and Appl., 21 21, 2, 107-122 (1987)
[40] Drinfeld, Vladimir, Cohomology of compactified moduli varieties of \(F\)-sheaves of rank \(2\), Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI). J. Soviet Math., 162 46, 2, 1789-1821 (1989)
[41] Drinfeld, Vladimir, Proof of the Petersson conjecture for \({\rm GL}(2)\) over a global field of characteristic \(p\), Funktsional. Anal. i Prilozhen.. Funct. Anal. Appl., 22 22, 1, 28-43 (1988)
[42] Drinfeld, Vladimir; Simpson, Carlos, \(B\)-structures on \(G\)-bundles and local triviality, Math. Res. Lett., 2, 6, 823-829 (1995) · Zbl 0874.14043
[43] Drinfeld, Vladimir, On a conjecture of Deligne, Mosc. Math. J., 12, 3, 515-542, 668 (2012) · Zbl 1271.14028
[44] Drinfeld, Vladimir, On the pro-semisimple completion of the fundamental group of a smooth variety over a finite field (2015) · Zbl 1391.14042
[45] Eisenbud, David, Commutative algebra, Graduate Texts in Mathematics 150, xvi+785 pp. (1995), Springer-Verlag, New York · Zbl 0819.13001
[46] Esnault, H\'el\`ene; Kerz, Moritz, A finiteness theorem for Galois representations of function fields over finite fields (after Deligne), Acta Math. Vietnam., 37, 4, 531-562 (2012) · Zbl 1395.11103
[47] Faltings, Gerd; Chai, Ching-Li, Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 22, xii+316 pp. (1990), Springer-Verlag, Berlin · Zbl 0744.14031
[48] Faltings, Gerd, Group schemes with strict \(\mathcal{O} \)-action, Mosc. Math. J., 2, 2, 249-279 (2002) · Zbl 1013.11079
[49] Finkelberg, Michael; Lysenko, Sergey, Twisted geometric Satake equivalence, J. Inst. Math. Jussieu, 9, 4, 719-739 (2010) · Zbl 1316.22019
[50] Frobenius, Ferdinand G., \`“Uber die Primfactoren der Gruppendeterminante, Ges. Abh III (S”ber. Akad. Wiss. Berlin) 1343-1382 (1896) · JFM 27.0094.01
[51] Gaitsgory, Dennis, Construction of central elements in the affine Hecke algebra via nearby cycles, Invent. Math., 144, 2, 253-280 (2001) · Zbl 1072.14055
[52] Gaitsgory, Dennis, On a vanishing conjecture appearing in the geometric Langlands correspondence, Ann. of Math. (2), 160, 2, 617-682 (2004) · Zbl 1129.11050
[53] Gaitsgory, Dennis, On de Jong’s conjecture, Israel J. Math., 157, 155-191 (2007) · Zbl 1123.11020
[54] Gaitsgory, Dennis, Outline of the proof of the geometric Langlands conjecture for \(GL_2\). De la G\'eom\'etrie Alg\'ebrique aux Formes Automorphes (II): Une collection d’articles en l’honneur du soixanti\`“eme anniversaire de G\'”erard Laumon, Ast\'erisque 370, 1-112 (2015), Soc. Math. France
[55] Gaitsgory, Dennis; Lysenko, Sergey, Parameters and duality for the metaplectic geometric Langlands theory. (2016)
[56] Gan, Wee Teck; Gao, Fan, The Langlands-Weissman Program for Brylinski-Deligne extensions (2014)
[57] Genestier, Alain; Tilouine, Jacques, Syst\`“emes de Taylor-Wiles pour \(\rm GSp_4\), Formes automorphes. II. Le cas du groupe \(\rm GSp(4)\), Ast\'”erisque, 302, 177-290 (2005) · Zbl 1142.11036
[58] Genestier, Alain; Lafforgue, Vincent, Th\'eorie de Fontaine en \'egales caract\'eristiques, Ann. Sci. \'Ec. Norm. Sup\'er. (4), 44, 2, 263-360 (2011) · Zbl 1277.14036
[59] Genestier, Alain; Lafforgue, Vincent, Chtoucas restreints pour les groupes r\'eductifs et param\'etrisation de Langlands locale (2017)
[60] Ginzburg, Victor, Perverse sheaves on a loop group and Langlands duality (1995)
[61] Gross, Benedict H., On the Satake isomorphism. Galois representations in arithmetic algebraic geometry, Durham, 1996, London Math. Soc. Lecture Note Ser. 254, 223-237 (1998), Cambridge Univ. Press, Cambridge · Zbl 0996.11038
[62] Harder, G\"unter, Chevalley groups over function fields and automorphic forms, Ann. of Math. (2), 100, 249-306 (1974) · Zbl 0309.14041
[63] Heinloth, Jochen, Uniformization of \(\mathcal{G} \)-bundles, Math. Ann., 347, 3, 499-528 (2010) · Zbl 1193.14014
[64] Heinloth, Jochen; Schmitt, Alexander H. W., The cohomology rings of moduli stacks of principal bundles over curves, Doc. Math., 15, 423-488 (2010) · Zbl 1206.14029
[65] Hilbert, David, Ueber die vollen Invariantensysteme, Math. Ann., 42, 3, 313-373 (1893) · JFM 25.0173.01
[66] Hiraga, Kaoru; Saito, Hiroshi, On \(L\)-packets for inner forms of \(SL_n\), Mem. Amer. Math. Soc., 215, 1013, vi+97 pp. (2012) · Zbl 1242.22023
[67] Huneke, Craig; Swanson, Irena, Integral closure of ideals, rings, and modules, London Mathematical Society Lecture Note Series 336, xiv+431 pp. (2006), Cambridge University Press, Cambridge · Zbl 1117.13001
[68] Huybrechts, Daniel; Lehn, Manfred, The geometry of moduli spaces of sheaves, Cambridge Mathematical Library, xviii+325 pp. (2010), Cambridge University Press, Cambridge · Zbl 1206.14027
[69] Jacquet, Herv\'e; Shalika, Joseph A., On Euler products and the classification of automorphic representations. I, Amer. J. Math., 103, 3, 499-558 (1981) · Zbl 0473.12008
[70] Jacquet, Herv\'e; Shalika, Joseph A., On Euler products and the classification of automorphic forms. II, Amer. J. Math., 103, 4, 777-815 (1981) · Zbl 0491.10020
[71] Jacquet, Herv\'e; Piatetskii-Shapiro, Ilya I.; Shalika, Joseph A., Rankin-Selberg convolutions, Amer. J. Math., 105, 2, 367-464 (1983) · Zbl 0525.22018
[72] Jannsen, Uwe, On finite-dimensional motives and Murre’s conjecture. Algebraic cycles and motives. Vol. 2, London Math. Soc. Lecture Note Ser. 344, 112-142 (2007), Cambridge Univ. Press, Cambridge · Zbl 1127.14007
[73] Kazhdan, David, An introduction to Drinfel\cprime d’s “Shtuka”. Automorphic forms, representations and \(L\)-functions, Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977, Proc. Sympos. Pure Math., XXXIII, 347-356 (1979), Amer. Math. Soc., Providence, R.I.
[74] Kazhdan, David; Varshavsky, Yakov, On the cohomology of the moduli spaces of \(F\)-bundles: stable cuspidal Deligne-Lusztig part, in preparation (2013)
[75] Kostant, Bertram, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., 81, 973-1032 (1959) · Zbl 0099.25603
[76] Kottwitz, Robert E., Stable trace formula: cuspidal tempered terms, Duke Math. J., 51, 3, 611-650 (1984) · Zbl 0576.22020
[77] Kottwitz, Robert E., Stable trace formula: elliptic singular terms, Math. Ann., 275, 3, 365-399 (1986) · Zbl 0577.10028
[78] Kottwitz, Robert E., Shimura varieties and \(\lambda \)-adic representations. Automorphic forms, Shimura varieties, and \(L\)-functions, Vol. I, Ann Arbor, MI, 1988, Perspect. Math. 10, 161-209 (1990), Academic Press, Boston, MA · Zbl 0743.14019
[79] Labesse, Jean-Pierre; Langlands, Robert P., \(L\)-indistinguishability for \({\rm SL}(2)\), Canad. J. Math., 31, 4, 726-785 (1979) · Zbl 0421.12014
[80] Lafforgue, Laurent, Chtoucas de Drinfeld et conjecture de Ramanujan-Petersson, Ast\'erisque, 243, ii+329 pp. (1997) · Zbl 0899.11026
[81] Lafforgue, Laurent, Une compactification des champs classifiant les chtoucas de Drinfeld, J. Amer. Math. Soc., 11, 4, 1001-1036 (1998) · Zbl 1045.11041
[82] Lafforgue, Laurent, Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math., 147, 1, 1-241 (2002) · Zbl 1038.11075
[83] Lafforgue, Laurent, Chtoucas de Drinfeld, formule des traces d’Arthur-Selberg et correspondance de Langlands. Proceedings of the International Congress of Mathematicians, Vol. I, Beijing, 2002, 383-400 (2002), Higher Ed. Press, Beijing · Zbl 1160.11360
[84] Langlands, Robert P., Problems in the theory of automorphic forms. Lectures in modern analysis and applications, III, 18-61. Lecture Notes in Math., Vol. 170 (1970), Springer, Berlin
[85] Lapid, Erez M., Some results on multiplicities for \({\rm SL}(n)\), Israel J. Math., 112, 157-186 (1999) · Zbl 0937.22002
[86] Larsen, Michael, On the conjugacy of element-conjugate homomorphisms, Israel J. Math., 88, 1-3, 253-277 (1994) · Zbl 0898.20025
[87] Larsen, Michael, On the conjugacy of element-conjugate homomorphisms. II, Quart. J. Math. Oxford Ser. (2), 47, 185, 73-85 (1996) · Zbl 0898.20026
[88] Laszlo, Yves; Olsson, Martin, The six operations for sheaves on Artin stacks. I. Finite coefficients, Publ. Math. Inst. Hautes \'Etudes Sci., 107, 109-168 (2008) · Zbl 1191.14002
[89] Laszlo, Yves; Olsson, Martin, The six operations for sheaves on Artin stacks. II. Adic coefficients, Publ. Math. Inst. Hautes \'Etudes Sci., 107, 169-210 (2008) · Zbl 1191.14003
[90] Lau, Eike S., On generalised \(D\)-shtukas, Bonner Mathematische Schriften [Bonn Mathematical Publications] 369, xii+110 pp. (2004), Universit\`“at Bonn, Mathematisches Institut, Bonn · Zbl 1119.14012
[91] Lau, Eike S., On degenerations of \(\mathcal{D} \)-shtukas, Duke Math. J., 140, 2, 351-389 (2007) · Zbl 1149.14018
[92] Laumon, G\'erard, Transformation de Fourier, constantes d’\'equations fonctionnelles et conjecture de Weil, Inst. Hautes \'Etudes Sci. Publ. Math., 65, 131-210 (1987) · Zbl 0641.14009
[93] Laumon, G\'erard, Cohomology of Drinfeld modular varieties. Part I, Cambridge Studies in Advanced Mathematics 41, xiv+344 pp. (1996), Cambridge University Press, Cambridge · Zbl 0837.14018
[94] Laumon, G\'erard, Cohomology of Drinfeld modular varieties. Part II, Cambridge Studies in Advanced Mathematics 56, xii+366 pp. (1997), Cambridge University Press, Cambridge · Zbl 0870.14016
[95] Laumon, G\'erard, Drinfeld shtukas. Vector bundles on curves-new directions, Cetraro, 1995, Lecture Notes in Math. 1649, 50-109 (1997), Springer, Berlin
[96] Laumon, G\'erard; Moret-Bailly, Laurent, Champs alg\'ebriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics] 39, xii+208 pp. (2000), Springer-Verlag, Berlin · Zbl 0945.14005
[97] Laumon, G\'erard; Rapoport, Michael; Stuhler, Ulrich, \({\mathcal{D}} \)-elliptic sheaves and the Langlands correspondence, Invent. Math., 113, 2, 217-338 (1993) · Zbl 0809.11032
[98] Lubotzky, Alexander; Magid, Andy R., Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc., 58, 336, xi+117 pp. (1985) · Zbl 0598.14042
[99] Lusztig, George, Singularities, character formulas, and a \(q\)-analog of weight multiplicities. Analysis and topology on singular spaces, II, III, Luminy, 1981, Ast\'erisque 101, 208-229 (1983), Soc. Math. France, Paris
[100] Lysenko, Sergey, Moduli of metaplectic bundles on curves and theta-sheaves, Ann. Sci. \'Ecole Norm. Sup. (4), 39, 3, 415-466 (2006) · Zbl 1111.14029
[101] Lysenko, Sergey, Geometric theta-lifting for the dual pair \(\mathbb{S}\mathbb{O}_{2m},\mathbb{S}{\rm p}_{2n} \), Ann. Sci. \'Ec. Norm. Sup\'er. (4), 44, 3, 427-493 (2011) · Zbl 1229.22015
[102] Lysenko, Sergey, Twisted geometric Satake equivalence: reductive case (2014) · Zbl 1316.22019
[103] Lysenko, Sergey, Twisted geometric Langlands correspondence for a torus, Int. Math. Res. Not. IMRN, 18, 8680-8723 (2015) · Zbl 1345.14018
[104] McNamara, Peter J., Principal series representations of metaplectic groups over local fields. Multiple Dirichlet series, L-functions and automorphic forms, Progr. Math. 300, 299-327 (2012), Birkh\"auser/Springer, New York · Zbl 1283.11081
[105] Mirkovi\'c, Ivan; Vilonen, Kari, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2), 166, 1, 95-143 (2007) · Zbl 1138.22013
[106] Mumford, David; Fogarty, John; Kirwan, Frances, Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)] 34, xiv+292 pp. (1994), Springer-Verlag, Berlin
[107] Ng\^o, B\'ao Ch\^au, Faisceaux pervers, homomorphisme de changement de base et lemme fondamental de Jacquet et Ye, Ann. Sci. \'Ecole Norm. Sup. (4), 32, 5, 619-679 (1999) · Zbl 1002.11046
[108] Ng\^o, Bao Ch\^au, \( \mathcal{D} \)-chtoucas de Drinfeld \`“a modifications sym\'”etriques et identit\'e de changement de base, Ann. Sci. \'Ecole Norm. Sup. (4), 39, 2, 197-243 (2006) · Zbl 1147.22012
[109] Ng\^o, Bao Ch\^au, Fibration de Hitchin et endoscopie, Invent. Math., 164, 2, 399-453 (2006) · Zbl 1098.14023
[110] Ng\^o, Bao Ch\^au; Ng\^o Dac, Tu\^an, Comptage de \(G\)-chtoucas: la partie r\'eguli\`ere elliptique, J. Inst. Math. Jussieu, 7, 1, 181-203 (2008) · Zbl 1141.22005
[111] Tu\^an Ng\^o Dac, Compactification des champs de chtoucas et th\'eorie g\'eom\'etrique des invariants, Ast\'erisque, 313, 124 pp. (2007) · Zbl 1144.11047
[112] Ng\^o Dac, Tu\^an, Sur le d\'eveloppement spectral de la formule des traces d’Arthur-Selberg sur les corps de fonctions, Bull. Soc. Math. France, 137, 4, 545-586 (2009) · Zbl 1304.11038
[113] Ng\^o Dac, Tu\^an, Formule des traces d’Arthur-Selberg pour les corps de fonctions II · Zbl 1304.11038
[114] Pappas, Georgios; Rapoport, Michael, Twisted loop groups and their affine flag varieties, Adv. Math., 219, 1, 118-198 (2008) · Zbl 1159.22010
[115] Peterson, Elisha, On a Diagrammatic Proof of the Cayley-Hamilton Theorem (2009)
[116] Piatetski-Shapiro, Ilya I., Euler subgroups. Lie groups and their representations, Proc. Summer School, Bolyai J\'anos Math. Soc., Budapest, 1971, 597-620 (1975), Halsted, New York
[117] Poincar\'e, Henri, Sur les groupes des \'equations lin\'eaires, Acta Math., 4, 1, 201-312 (1884) · JFM 16.0252.01
[118] Procesi, Claudio, The invariant theory of \(n\times n\) matrices, Advances in Math., 19, 3, 306-381 (1976) · Zbl 0331.15021
[119] Procesi, Claudio, A formal inverse to the Cayley-Hamilton theorem, J. Algebra, 107, 1, 63-74 (1987) · Zbl 0618.16014
[120] Reich, Ryan Cohen, Twisted geometric Satake equivalence via gerbes on the factorizable Grassmannian, Represent. Theory, 16, 345-449 (2012) · Zbl 1302.22014
[121] Richardson, Roger W., Conjugacy classes of \(n\)-tuples in Lie algebras and algebraic groups, Duke Math. J., 57, 1, 1-35 (1988) · Zbl 0685.20035
[122] Richarz, Timo, A new approach to the geometric Satake equivalence, Doc. Math., 19, 209-246 (2014) · Zbl 1326.14121
[123] Rouquier, Rapha\`“el, Caract\'”erisation des caract\`eres et pseudo-caract\`eres, J. Algebra, 180, 2, 571-586 (1996) · Zbl 0857.16013
[124] Satake, Ichir\^o, Theory of spherical functions on reductive algebraic groups over \({\mathfrak{p}} \)-adic fields, Inst. Hautes \'Etudes Sci. Publ. Math., 18, 5-69 (1963) · Zbl 0122.28501
[125] Schieder, Simon, The Harder-Narasimhan stratification of the moduli stack of \(G\)-bundles via Drinfeld’s compactifications, Selecta Math. (N.S.), 21, 3, 763-831 (2015) · Zbl 1341.14006
[126] Serre, Jean-Pierre, Compl\`“ete r\'”eductibilit\'e, Ast\'erisque, 299, Exp. No. 932, viii, 195-217 (2005) · Zbl 1156.20313
[127] Seshadri, C. S., Fibr\'es vectoriels sur les courbes alg\'ebriques, Ast\'erisque 96, 209 pp. (1982), Soci\'et\'e Math\'ematique de France, Paris · Zbl 0517.14008
[128] Shalika, Joseph A., The multiplicity one theorem for \({\rm GL}_n\), Ann. of Math. (2), 100, 171-193 (1974) · Zbl 0316.12010
[129] Sorger, Christoph, Lectures on moduli of principal \(G\)-bundles over algebraic curves. School on Algebraic Geometry, Trieste, 1999, ICTP Lect. Notes 1, 1-57 (2000), Abdus Salam Int. Cent. Theoret. Phys., Trieste · Zbl 0989.14009
[130] Taylor, Richard, Galois representations associated to Siegel modular forms of low weight, Duke Math. J., 63, 2, 281-332 (1991) · Zbl 0810.11033
[131] Thang, Nguyen Quoc, On Galois cohomology and weak approximation of connected reductive groups over fields of positive characteristic, Proc. Japan Acad. Ser. A Math. Sci., 87, 10, 203-208 (2011) · Zbl 1254.11042
[132] Varshavsky, Yakov, Moduli spaces of principal \(F\)-bundles, Selecta Math. (N.S.), 10, 1, 131-166 (2004) · Zbl 1070.14026
[133] Varshavsky, Yakov, A proof of a generalization of Deligne’s conjecture, Electron. Res. Announc. Amer. Math. Soc., 11, 78-88 (2005) · Zbl 1109.14021
[134] Varshavsky, Yakov, Lefschetz-Verdier trace formula and a generalization of a theorem of Fujiwara, Geom. Funct. Anal., 17, 1, 271-319 (2007) · Zbl 1131.14019
[135] Varshavsky, Yakov, Towards Langlands correspondence over function fields for split reductive groups. Symmetries in algebra and number theory (SANT), 139-147 (2009), Universit\`“atsverlag G\'”ottingen, G\"ottingen · Zbl 1267.11114
[136] Varshavsky, Yakov, Communication personnelle, janvier 2016
[137] Vinberg, Ernest B., On invariants of a set of matrices, J. Lie Theory, 6, 2, 249-269 (1996) · Zbl 0884.14006
[138] Wang, Jonathan, The moduli stack of G-bundles (2011)
[139] Wang, Jonathan, On an Invariant Bilinear Form on the Space of Automorphic Forms via Asymptotics, 172 pp. (2017), ProQuest LLC, Ann Arbor, MI
[140] Wang, Song, Dimension Data, Local and Global Conjugacy in Reductive Groups (2007)
[141] Wang, Song, On dimension data and local vs. global conjugacy. Fifth International Congress of Chinese Mathematicians. Part 1, 2, AMS/IP Stud. Adv. Math., 51, pt. 1 2, 365-382 (2012), Amer. Math. Soc., Providence, RI · Zbl 1246.22028
[142] Wang, Song, On local and global conjugacy, J. Algebra, 439, 334-359 (2015) · Zbl 1332.22021
[143] Weissman, Martin H., Split metaplectic groups and their L-groups, J. Reine Angew. Math., 696, 89-141 (2014) · Zbl 1321.22027
[144] Weissman, Martin H., L-groups and parameters for covering groups (2015)
[145] Wiles, Andrew, On ordinary \(\lambda \)-adic representations associated to modular forms, Invent. Math., 94, 3, 529-573 (1988) · Zbl 0664.10013
[146] Xiao, Liang; Zhu, Xinwen, Cycles on Shimura varieties via geometric Satake (2017)
[147] Xue, Cong, Cohomologie cuspidale des champs de chtoucas, Th\`“ese de doctorat, Universit\'”e Paris-Saclay (2017)
[148] Zhu, Xinwen, The geometric Satake correspondence for ramified groups, Ann. Sci. \'Ec. Norm. Sup\'er. (4), 48, 2, 409-451 (2015) · Zbl 1392.11036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.