×

Equidistribution, uniform distribution: a probabilist’s perspective. (English) Zbl 1395.60001

The authors present the recent advances on equidistributions and uniform distributions in probabilistic spirit.
For instance, there is recent progress in completely equidistributed sequences and their generalizations in relation to Markov chain Monte Carlo simulations (see: S. Chen et al. [Monte Carlo and quasi-Monte Carlo methods 2010. Selected papers based on the presentations at the 9th international conference on Monte Carlo and quasi-Monte Carlo in scientific computing (MCQMC 2010), Warsaw, Poland Berlin: Springer. 313–327 (2012; Zbl 1271.65001)]).

MSC:

60-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to probability theory
11-02 Research exposition (monographs, survey articles) pertaining to number theory
11K45 Pseudo-random numbers; Monte Carlo methods
05C10 Planar graphs; geometric and topological aspects of graph theory
60F15 Strong limit theorems

Citations:

Zbl 1271.65001
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] C. Aistleitner, Quantitative uniform distribution results for geometric progressions. Israel J. Math., 204, 1: 155-197, 2014. · Zbl 1303.11085
[2] C. Aistleitner and I. Berkes, On the central limit theorem for \(f(n_{k}x)\). Probab. Theory Related Fields, 146, 1-2:267-289, 2010. · Zbl 1185.60019
[3] C. Aistleitner and I. Berkes, Probability and metric discrepancy theory. Stoch. Dyn., 11, 183-207, 2011. · Zbl 1260.11051
[4] C. Aistleitner and I. Berkes, Limit distributions in metric discrepancy theory. Monatsh. Math., 169, 3-4: 253—265, 2013. · Zbl 1287.11094
[5] C. Aistleitner, I. Berkes, and R.F. Tichy, Lacunary sequences and permutations. Dependence in probability, analysis and number theory. A volume in memory of Walter Philipp, Kendrick Press. 35-49, 2010. · Zbl 1219.60002
[6] K. Burdzy, The Search for Certainty. World Scientific, 2009. · Zbl 1330.60003
[7] K. Burdzy, Resonance: From Probability to Epistemology and Back. Imperial College Press, 2016. · Zbl 1338.60002
[8] R. Durrett, Probability: theory and examples, \(3\)rd edition. Duxbury advanced series, 2005.
[9] S. Chen, J. Dick, and A.B. Owen, Consistency of Markov chain quasi-Monte Carlo on continuous state spaces. Ann. Statist., 39, 2:673-701, 2011. · Zbl 1225.65010
[10] S. Chen, M. Matsumoto, T. Nishimura, and A.B. Owen, New inputs and methods for Markov chain quasi-Monte Carlo. In Monte Carlo and quasi-Monte Carlo methods 2010. Springer Proc. Math. Stat. 23, 313-327, Springer, 2012. · Zbl 1271.65001
[11] H. Davenport, P. Erdős, and W.J. LeVeque, On Weyl’s criterion for uniform distribution. Michigan Math. J., 10, 3:311-314, 1963. · Zbl 0119.28201
[12] M. Drmota and R.F. Tichy, Sequences, Discrepancies, and Applications. Lecture Notes in Mathematics 1651, Springer, Berlin, 1997. · Zbl 0877.11043
[13] M. Drmota, R.F Tichy, and R. Winkler, Completely uniformly distributed sequences of matrices. In: Number-Theoretic Analysis. Lecture Notes in Math. 1452, pp. 43-57, Springer, 1990. · Zbl 0717.11030
[14] P. Erdős and M. Kac, The Gaussian law of errors in the theory of additive number theoretic functions. Amer. J. Math., 62, 1:738-742, 1940. · JFM 66.0172.02
[15] J.N. Franklin, Deterministic simulation of random processes, Math. Comp., 17, 28-59, 1963. · Zbl 0124.34601
[16] M. Goldstern, Eine Klasse volständig gleichverteiler Folgen. In Zahlentheoretishe Analysis, II Lecture Notes in Math. 1262, pp. 37-45, Springer, 1987.
[17] P.J. Holewijn, Note on Weyl’s criterion and the uniform distribution of independent random variables. Ann. Math. Stat.40, 1124-1125, 1969. · Zbl 0176.47502
[18] P.J. Holewijn, On the Uniform Distribution of Sequences of Random Variables. Z. Wahrscheinlichkeitstheorie verw. Geb., 14, 89-92, 1969. · Zbl 0185.44601
[19] M. Kac, Statistical Independence in Probability, Analysis and Number Theory. Mathematical Association of America, 1959. · Zbl 0088.10303
[20] M. Kac, Probability methods in some problems of analysis and number theory. Bull. Amer. Math. Soc., 55, 641-665, 1949. · Zbl 0036.30502
[21] J.H.B. Kemperman, Probability methods in the theory of distributions modulo one. Compositio Mathematica, 16 106-137, 1964. · Zbl 0201.37701
[22] H. Kesten, Uniform Distribution \(\mathsf{mod}~1\). Ann. Math.,71, 2:445-471, 1960. · Zbl 0101.03803
[23] H. Kesten, Uniform Distribution \(\mathsf{mod}~1\) (II). Acta Arith., 7, 4:355-380, 1962. · Zbl 0113.27004
[24] D. Khoshnevisan, Normal numbers are normal. Clay Mathematics Institute Annual Report, 15, continued pp. 27—31, 2006.
[25] D.E. Knuth, Construction of a random sequence. BIT Numerical Mathematics, 5, 4:246-250, 1965. · Zbl 0134.35701
[26] D.E. Knuth, The Art of Computer Programming, volume 2/Seminumerical Algorithms, 3rd edition. Addison-Wesley, 1997. · Zbl 0895.68055
[27] A.N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, Ergebnisse der Mathematik und ihrer Grenzgebeite. J. Springer, 1933.
[28] A.N. Kolmogorov, Tri podhoda k opredeleniju ponjatija “količevstvo informacii“ (Three approaches to the definition of the concept “quantity of information”.). Problemy peredači informacii1, 3-11, 1965.
[29] J.F. Koksma, Ein mengentheoretischer Satz über die Gleichverteilung modulo Eins. Compositio Math., 2, 250-258, 1935. · Zbl 0012.01401
[30] N.M. Korobov, On functions with uniformly distributed fractional parts (Russian). Doklady Akad. Nauk SSSR (N.S.), 62, 21-22, 1948.
[31] N.M. Korobov, Some problems on the distribution of fractional parts (Russian). Uspehi Matem. Nauk SSSR (N.S.), 4, 1(29):189-190, 1949.
[32] N.M. Korobov, Concerning some questions of uniform distribution (Russian). Izvestiya Akad. Nauk SSSR. Ser. Mat.14, 215-238, 1950.
[33] N.M. Korobov, Bounds of trigonometric sums involving completely uniformly distributed functions (Russian). Soviet Math. Dokl., 1, 923-926, 1960. · Zbl 0212.07401
[34] N.M. Korobov, Exponential Sums and their Applications. Mathematics and Its Applications, 80, Kluwer, 1992. · Zbl 0754.11022
[35] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences. Wiley and Sons, 1974. · Zbl 0281.10001
[36] M.B. Lacaze, Estimation de moyennes et fonctions de répartition de suites d’échantillonnage. Ann. Inst. Henri Poincaré Probab. Stat., 9, 2:145-165, 1973. · Zbl 0289.60016
[37] M. van Lambalgen, Randomness and Foundations of Probability: von Mises’ axiomatisation of random sequences. Statistics, probability and game theory: Papers in honor of David Blackwell, 347-367, IMS, 1996.
[38] L. Levin, On the notion of a random sequence. Soviet Math. Dok.14 1413-1416, 1973. · Zbl 0312.94006
[39] M.B. Levin, Discrepancy Estimates of Completely Uniformly Distributed and Pseudorandom Number Sequences. Internat. Math. Res. Notices22, 1231-1251, 1999. · Zbl 0943.11036
[40] N. Limić, On completely equidistributed numbers. Math. Commun.7, 103-111, 2002. · Zbl 1147.11318
[41] R.M. Loynes, Some results in the probabilistic theory of asymptotic uniform distribution modulo 1. Z. Wahrscheinlichkeitstheorie verw. Geb.26, 33-41, 1973. · Zbl 0289.60017
[42] R. Lyons, Strong laws of large numbers for weakly correlated random variables. Michigan Math. J., 35, 3:353-359, 1988. · Zbl 0684.60025
[43] P. Martin-Löf, The definition of random sequences. Inform. Control9, 602-619, 1966. · Zbl 0244.62008
[44] M. Mendès France, Nombres normaux. Applications aux fonctions pseudo-aléatoires. J. Anal. Math., 20, 1:1-56, 1967.
[45] R. von Mises, Probability, Statistics and Truth, 2nd revised English edn., Dover, New York, 1957. · Zbl 0080.33801
[46] H. Niederreiter and R.F. Tichy, Solution of a problem of Knuth on complete uniform distribution of sequences. Mathematika, 32, 26-32, 1985. · Zbl 0582.10036
[47] H. Niederreiter and R.F. Tichy, Metric theorems on uniform distribution and approximation theory. Journées arithmétiques de Besançon (Besançon, 1985). Astérisque147-148, 319-323, 1987.
[48] A.B. Owen and S.D. Tribble, A quasi-Monte Carlo Metropolis algorithm. Proc. Natl. Acad. Sci. USA, 102, 25:8844-8849, 2005. · Zbl 1135.65001
[49] R. Salem and A. Zygmund, On Lacunary Trigonometric Series. Proc. Natl. Acad. Sci. USA, 33, 11:333-338, 1947. · Zbl 0029.11902
[50] O. Strauch and S. Porubský, Distribution of Sequences: A Sampler. Peter Lang, 2005.
[51] R.F. Tichy, Ein metrischer Satz über vollständig gleichverteile Folgen. Acta Arith.48, 2:197-207, 1987. · Zbl 0574.10049
[52] S.D. Tribble and A.B. Owen, Construction of weakly CUD sequences for MCMC sampling. Electron. J. Stat., 2, 634-660, 2008. · Zbl 1320.62055
[53] H. Weyl, Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann., 77, 313-352, 1916. · JFM 46.0278.06
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.