zbMATH — the first resource for mathematics

Type A blocks of super category \(\mathcal{O}\). (English) Zbl 1396.17005
It is known that the study of the BGG category \(\mathcal{O}\) for the queer Lie superalgebra \(\mathfrak{q}_n\) reduces to the study of three types of blocks, so called blocks of types \(A\), \(B\) and \(C\). The paper under review studies blocks of type \(A\) and establishes for them the truth of the Kazhdan-Lusztig conjecture as formulated by Cheng, Kwon and Wang. The authors use tools from higher representation theory to establish an equivalence of categories between the type \(A\) blocks of \(\mathfrak{q}_n\) and integral blocks of category \(\mathcal{O}\) for a general linear Lie superalgebra. This reduces the original problem to the known case of general linear Lie superalgebras.

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B20 Simple, semisimple, reductive (super)algebras
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
18D99 Categorical structures
Full Text: DOI
[1] Brundan, J., Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra \(\mathfrak{gl}(m | n)\), J. Amer. Math. Soc., 16, 185-231, (2003) · Zbl 1050.17004
[2] Brundan, J., Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra \(\mathfrak{q}(n)\), Advances Math., 182, 28-77, (2004) · Zbl 1048.17003
[3] Brundan, J., Tilting modules for Lie superalgebras, Commun. Alg., 32, 2251-2268, (2004) · Zbl 1077.17006
[4] J. Brundan, N. Davidson, Type C blocks of super category \(\mathcal{O}\), in preparation. · Zbl 1396.17005
[5] Brundan, J.; Ellis, A., Monoidal supercategories · Zbl 1396.17012
[6] J. Brundan, A. Ellis, Super Kac-Moody 2-categories, in preparation. · Zbl 1442.17008
[7] Brundan, J.; Kleshchev, A., Hecke-Clifford superalgebras, crystals of type \(A_{2 \ell}^{(2)}\) and modular branching rules for \(\hat{S}_n\), Represent. Theory, 5, 317-403, (2001) · Zbl 1005.17010
[8] Brundan, J.; Losev, I.; Webster, B., Tensor product categorifications and the super Kazhdan-Lusztig conjecture, Int. Math. Res. Not. IMRN, (2016), in press · Zbl 1405.17045
[9] Beilinson, A.; Ginzburg, V.; Soergel, W., Koszul duality patterns in representation theory, J. Amer. Math. Soc., 9, 473-527, (1996) · Zbl 0864.17006
[10] Cao, B.; Lam, N., An inversion formula for some Fock spaces · Zbl 1378.17036
[11] Chen, C.-W., Reduction method for representations of queer Lie superalgebras, J. Math. Phys., 57, (2016) · Zbl 1386.17011
[12] Chen, C.-W.; Cheng, S.-J., Quantum group of type A and representations of queer Lie superalgebra
[13] Cheng, S.-J.; Kwon, J.-H., Finite-dimensional half-integer weight modules over queer Lie superalgebras, Commun. Math. Phys., 346, 945-965, (2016) · Zbl 1406.17017
[14] Cheng, S.-J.; Kwon, J.-H.; Wang, W., Character formulae for queer Lie superalgebras and canonical bases of types A/C, Commun. Math. Phys., (2016), in press
[15] Cheng, S.-J.; Lam, N.; Wang, W., Brundan-Kazhdan-Lusztig conjecture for general linear Lie superalgebras, Duke Math. J., 164, 617-695, (2015) · Zbl 1387.17013
[16] Cheng, S.-J.; Wang, W., Dualities and representations of Lie superalgebras, Graduate Studies in Mathematics, vol. 144, (2012), AMS · Zbl 1271.17001
[17] Chuang, J.; Rouquier, R., Derived equivalences for symmetric groups and \(\mathfrak{sl}_2\)-categorification, Ann. Math., 167, 245-298, (2008) · Zbl 1144.20001
[18] Cline, E.; Parshall, B.; Scott, L., Finite dimensional algebras and highest weight categories, J. Reine Angew. Math., 391, 85-99, (1988) · Zbl 0657.18005
[19] Frisk, A., Typical blocks of the category \(\mathcal{O}\) for the queer Lie superalgebra, J. Algebra Appl., 6, 731-778, (2007) · Zbl 1236.17009
[20] Humphreys, J., Representations of semisimple Lie algebras in the BGG category \(\mathcal{O}\), Graduate Studies in Mathematics, vol. 94, (2008), AMS
[21] Kang, S.-J.; Kashiwara, M.; Tsuchioka, S., Quiver Hecke superalgebras, J. Reine Angew. Math., 711, 1-54, (2016) · Zbl 1360.17018
[22] Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups I, Represent. Theory, 13, 309-347, (2009) · Zbl 1188.81117
[23] Hill, D.; Kujawa, J.; Sussan, J., Degenerate affine Hecke-Clifford algebras and type Q Lie superalgebras, Math. Zeit., 268, 1091-1158, (2011) · Zbl 1231.20005
[24] Losev, I.; Webster, B., On uniqueness of tensor products of irreducible categorifications, Selecta Math., 21, 345-377, (2015) · Zbl 1359.17013
[25] Lusztig, G., Introduction to quantum groups, (1993), Birkhäuser · Zbl 0788.17010
[26] Mazorchuk, V., Parabolic category \(\mathcal{O}\) for classical Lie superalgebras, (Gorelik, M.; Papi, P., Advances in Lie Superalgebras, Springer INdAM Series, vol. 7, (2014), Springer), 149-166 · Zbl 1365.17003
[27] Nazarov, M., Young’s symmetrizers for projective representations of the symmetric group, Advances Math., 127, 190-257, (1997) · Zbl 0930.20011
[28] Rouquier, R., 2-Kac-Moody algebras
[29] Webster, B., Knot invariants and higher representation theory, Mem. Amer. Math. Soc., (2016), in press
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.