zbMATH — the first resource for mathematics

The existence of greedy bases in rank 2 quantum cluster algebras. (English) Zbl 1397.16022
From the introduction: At the heart of the definition of quantum cluster algebras is a desire to understand nice bases in quantum algebras arising from the representation theory of nonassociative algebras. Of particular interest is the dual canonical basis in the quantized coordinate ring of a unipotent group, or more generally in the quantized coordinate ring of a double Bruhat cell. Through a meticulous study of these algebras and their bases the notion of a cluster algebra was discovered by S. Fomin and A. Zelevinsky [J. Am. Math. Soc. 15, No. 2, 497–529 (2002; Zbl 1021.16017)] with the notion of a quantum cluster algebra following in the work [Adv. Math. 195, No. 2, 405–455 (2005; Zbl 1124.20028)] of A. Berenstein and A. Zelevinsky. Underlying the definition of quantum cluster algebras is a deep conjecture that the quantized coordinate rings described above in fact have the structure of a quantum cluster algebra and that the cluster monomials arising from these cluster structures belong to the dual canonical bases of the quantum algebras. The most pressing questions in the theory are thus related to understanding bases of a (quantum) cluster algebra.
Several bases are already known for both classical (a.k.a. commutative) and quantum cluster algebras. Some of these bases do not cover the rank 2 case and some do not have the same positivity properties as the greedy basis. An incomplete list of known bases and some of their important properties is given. …
Pushing beyond affine types it was shown by K. Lee, L. Li and A. Zelevinsky in [J. Algebr. Comb. 40, No. 3, 823–840 (2014; Zbl 1316.13034)] that for wild types the set of all indecomposable positive elements can be linearly dependent and therefore does not form a basis. In contrast, these authors in [Sel. Math., New Ser. 20, No. 1, 57–82 (2014; Zbl 1295.13031)] constructed for rank 2 coefficient-free cluster algebras a combinatorially defined “greedy basis” which consists of a certain subset of the indecomposable positive elements.
Our main goal in this note is to establish the existence of a quantum lift of the greedy basis.
16S35 Twisted and skew group rings, crossed products
13F60 Cluster algebras
Full Text: DOI
[1] Berenstein, A.; Zelevinsky, A., Quantum cluster algebras, Adv. Math., 195, 2, 405-455, (2005) · Zbl 1124.20028
[2] Berenstein, A.; Zelevinsky, A., Triangular bases in quantum cluster algebras, Int. Math. Res. Not. IMRN, 2014, 6, 1651-1688, (2014), rns268 · Zbl 1303.13026
[3] Canakci, I.; Lee, K.; Schiffler, R., On cluster algebras from unpunctured surfaces with one marked point · Zbl 1350.13019
[4] Cerulli Irelli, G., Positivity in skew-symmetric cluster algebras of finite type
[5] Cerulli Irelli, G., Cluster algebras of type \(A_2^{(1)}\), Algebr. Represent. Theory, 15, 5, 977-1021, (2012) · Zbl 1261.13015
[6] Davison, B.; Maulik, D.; Schürmann, J.; Szendrői, B., Purity for graded potentials and quantum cluster positivity · Zbl 1345.14014
[7] Derksen, H.; Weyman, J.; Zelevinsky, A., Quivers with potentials and their representations II: applications to cluster algebras, J. Amer. Math. Soc., 23, 3, 749-790, (2010) · Zbl 1208.16017
[8] Dupont, G., Generic variables in acyclic cluster algebras, J. Pure Appl. Algebra, 215, 4, 628-641, (2011) · Zbl 1209.13024
[9] Dupont, G.; Thomas, H., Atomic bases in cluster algebras of types A and \(\widetilde{A}\), Proc. Lond. Math. Soc., 107, 4, 825-850, (2013) · Zbl 1283.13019
[10] Efimov, A., Quantum cluster variables via vanishing cycles
[11] Fomin, S.; Zelevinsky, A., Cluster algebras I: foundations, J. Amer. Math. Soc., 15, 2, 497-529, (2002) · Zbl 1021.16017
[12] Fomin, S.; Zelevinsky, A., Cluster algebras II: finite type classification, Invent. Math., 154, 1, 63-121, (2003) · Zbl 1054.17024
[13] Geiss, C.; Leclerc, B.; Schröer, J., Generic bases for cluster algebras and the chamber ansatz, J. Amer. Math. Soc., 25, 1, 21-76, (2012) · Zbl 1236.13020
[14] Kimura, Y.; Qin, F., Graded quiver varieties, quantum cluster algebras and dual canonical basis, Adv. Math., 262, 261-312, (2014) · Zbl 1331.13016
[15] Leclerc, B., Dual canonical bases, quantum shuffles and q-characters, Math. Z., 246, 4, 691-732, (2004) · Zbl 1052.17008
[16] Lee, K.; Li, L., On natural maps from strata of quiver Grassmannians to ordinary Grassmannians, (Noncommutative Birational Geometry, Representations and Combinatorics, Contemp. Math., vol. 592, (2013), AMS) · Zbl 1321.13012
[17] Lee, K.; Li, L.; Rupel, D.; Zelevinsky, A., Greedy bases in rank 2 quantum cluster algebras, Proc. Natl. Acad. Sci. USA, 111, 27, 9712-9716, (2014) · Zbl 1355.13018
[18] Lee, K.; Li, L.; Zelevinsky, A., Greedy elements in rank 2 cluster algebras, Selecta Math., 20, 57-82, (2014) · Zbl 1295.13031
[19] Lee, K.; Li, L.; Zelevinsky, A., Positivity and tameness in rank 2 cluster algebras, J. Algebraic Combin., 40, 3, 823-840, (2014) · Zbl 1316.13034
[20] Lee, K.; Schiffler, R., Proof of a positivity conjecture of M. Kontsevich on non-commutative cluster variables, Compos. Math., 148, 6, 1821-1832, (2012) · Zbl 1266.16027
[21] Lusztig, G., Introduction to quantum groups, Progr. Math., vol. 110, (1993), Birkhäuser · Zbl 0788.17010
[22] Musiker, G.; Schiffler, R.; Williams, L., Bases for cluster algebras from surfaces, Compos. Math., 149, 2, 217-263, (2013) · Zbl 1263.13024
[23] Nakajima, H., Quiver varieties and cluster algebras, Kyoto J. Math., 51, 1, 71-126, (2011) · Zbl 1223.13013
[24] Plamondon, P., Generic bases for cluster algebras from the cluster category, Int. Math. Res. Not. IMRN, 2013, 10, 2368-2420, (2013) · Zbl 1317.13055
[25] Qin, F., Quantum cluster variables via Serre polynomials, J. Reine Angew. Math., 668, 149-190, (2012), with an appendix by B. Keller · Zbl 1252.13013
[26] Qin, F., t-analogue of q-characters and bases of quantum cluster algebras
[27] Rupel, D., On a quantum analog of the caldero-chapoton formula, Int. Math. Res. Not. IMRN, 2011, 14, 3207-3236, (2011) · Zbl 1237.16013
[28] Rupel, D., Proof of the Kontsevich non-commutative cluster positivity conjecture, C. R. Math. Acad. Sci. Paris, 350, 21-22, 929-932, (2012) · Zbl 1266.16028
[29] Sherman, P.; Zelevinsky, A., Positivity and canonical bases in rank 2 cluster algebras of finite and affine types, Mosc. Math. J., 4, 4, 947-974, (2004) · Zbl 1103.16018
[30] Thurston, D., Positive basis for surface skein algebras, Proc. Natl. Acad. Sci. USA, 111, 27, 9725-9732, (2014) · Zbl 1355.57015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.