A matrix Bougerol identity and the Hua-Pickrell measures. (English) Zbl 1398.60010

Summary: We prove a Hermitian matrix version of Bougerol’s identity. Moreover, we construct the Hua-Pickrell measures on Hermitian matrices, as stochastic integrals with respect to a drifting Hermitian Brownian motion and with an integrand involving a conjugation by an independent, matrix analogue of the exponential of a complex Brownian motion with drift.


60B15 Probability measures on groups or semigroups, Fourier transforms, factorization
60B20 Random matrices (probabilistic aspects)
60J60 Diffusion processes
Full Text: DOI arXiv Euclid


[1] L. Alili, D. Dufresne, M. Yor, Sur l’identite de Bougerol pour les fonctionnelles exponentielles du mouvement brownien avec drift. In Exponential Functionals and Principal Values related to Brownian Motion. A collection of research papers; Biblioteca de la Revista Matematica, IberoAmericana, ed. M. Yor, 3–14, (1997). · Zbl 0905.60059
[2] T. Assiotis, Hua-Pickrell diffusions and Feller processes on the boundary of the graph of spectra, Available from https://arxiv.org/abs/1703.01813, (2017).
[3] P. Baldi, E. Casadio Tarabusi, A. Figa-Talamanca, M. Yor, Non-symmetric hitting distributions on the hyperbolic half-plane and subordinated perpetuities, Revista Matematica IberoAmericana, 17, Issue 1, 587–605, (2001). · Zbl 1001.60018
[4] J. Bertoin, D. Dufresne, M. Yor, Some two-dimensional extensions of Bougerol’s identity in law for the exponential functional of linear Brownian motion, Revista Matematica IberoAmericana, 29, Issue 4, 1307–1324, (2013). · Zbl 1303.60073
[5] A. Borodin, G. Olshanski, Infinite Random Matrices and Ergodic Measures, Communications in Mathematical Physics, Vol. 223, Issue 1, 87–123 (2001). · Zbl 0987.60020
[6] P. Bougerol, Exemples de theoremes locaux sur les groupes resolubles, Annales de l’ Institut Henri Poincare, 19, 369–391, (1983). · Zbl 0533.60010
[7] P. Bougerol, Personal communication.
[8] A. Bufetov, Y. Qiu, The explicit formulae for scaling limits in the ergodic decomposition of infinite Pickrell measures, Arkiv for Matematik, Vol. 54, Issue 2, 403–435, (2016). · Zbl 1365.37005
[9] M-F. Bru, Wishart processes, Journal of Theoretical Probability, Vol. 4, Issue 4, 725–751, (1991). · Zbl 0737.60067
[10] Y. Doumerc, PhD Thesis: Matrices aleatoires, processus stochastiques et groupes de reflexions, Available from http://perso.math.univ-toulouse.fr/ledoux/files/2013/11/PhD-thesis.pdf, (2005).
[11] D. Dufresne, The distribution of a perpetuity, with application to risk theory and pension funding, Scandinavian Actuarial Journal, no. 1, 39–79, (1990). · Zbl 0743.62101
[12] J. Franchi, Y. Le Jan, Hyperbolic dynamics and Brownian motion: An introduction, Oxford Mathematical Monographs, (2012). · Zbl 1257.37001
[13] P. Graczyk, J. Malecki Multidimensional Yamada-Watanabe theorem and its applications to particle systems, Journal of Mathematical Physics, Volume 54, Issue 2, (2013). · Zbl 1296.35224
[14] P. Graczyk, J. Malecki, Strong solutions of non-colliding particle systems, Electronic Journal of Probability, Vol. 19, 1–21, (2014). · Zbl 1307.60079
[15] Hua L.K., Harmonic analysis of functions of several complex variables in the classical domains, Chinese edition: Peking, Science Press (1958), English edition: Transl. Math. Monographs 6, RI Providence, American Mathematical Society (1963).
[16] Y. Neretin, Hua type integrals over unitary groups and over projective limits of unitary groups, Duke Mathematical Journal, Vol. 114, No. 2, 239–266, (2002). · Zbl 1019.43008
[17] D. Pickrell, Measures on infinite dimensional Grassmann manifolds, Journal of Functional Analysis, Vol. 70, Issue 2, 323–356, (1987). · Zbl 0621.28008
[18] B. Rider, B. Valko, Matrix Dufresne Identities, International Mathematics Research Notices, Vol. 2016, Issue 1, 174–218, (2016). · Zbl 1344.60070
[19] D.W. Stroock, Partial Differential Equations for Probabilists, Cambridge Studies in Advanced Mathematics, Vol. 112, (2008). · Zbl 1145.35002
[20] S. Vakeroudis, Bougerol’s identity in law and extensions, Probability Surveys, Vol. 9, 411–437, (2012). · Zbl 1278.60125
[21] M. Yor, Exponential Functionals of Brownian Motion and Related Processes, Springer Finance, (2001). · Zbl 0999.60004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.