zbMATH — the first resource for mathematics

The diagram approach in knot theory and applications to graph theory. (English. Russian original) Zbl 1400.57003
Mosc. Univ. Math. Bull. 73, No. 3, 124-130 (2018); translation from Vestn. Mosk. Univ., Ser. I 73, No. 3, 65-71 (2018).
Summary: The paper is a survey of a series of publications of the authors awarded by I. I Shuvalov First Prize of Lomonosov Moscow State University for scientific activity, 2017.
57M15 Relations of low-dimensional topology with graph theory
05C10 Planar graphs; geometric and topological aspects of graph theory
Full Text: DOI
[1] V. O. Manturov and D. P. Ilyutko, Virtual Knots. The St,ate of the Art (World Sei. Publ. Co, Singapore, 2013). · Zbl 1270.57003
[2] Ilyutko, D. P.; Trofimova, A. D., 2-colored diagrams of knots, Lobachevskii J. Math., 38, 987, (2017) · Zbl 1404.57012
[3] Manturov, V. O., Parity in knot theory, Matem. Sbornik, 201, 65, (2010) · Zbl 1210.57010
[4] Ilyutko, D. P.; Manturov, V. O.; Nikonov, I. M., Parity in knot theory and graph-links, Contem. Math. Fundamental Directions, 41, 3, (2011) · Zbl 1320.57001
[5] Ilyutko, D. P.; Safina, V. S., Graph-links: nonrealizability, orientation, and Jones polynomial, Contem. Math. Fundamental Directions, 51, 33, (2014) · Zbl 1337.05025
[6] Khovariov, M., A categorificatiori of the Jones polynomial, Duke Math. J., 101, 359, (2000) · Zbl 0960.57005
[7] Kronheimer, P. B.; Mrowka, T. S., Khovanov homology is an unknot-detector, Pub. Math, de 1’IHES, 113, 97, (2011) · Zbl 1241.57017
[8] I. M. Nikonov, “Odd Khovanov Homology of Principally Unimodular Bipartite Graph-Links,” Trudy Semin. Vektorn. Tenzor. Anal. Prilozhen. Geom., Mekhan., Fiz. XXVIII, 211 (2012) [in Russian] (arXiv: 1006.0161).
[9] D. P. Ilyutko, V. O. Manturov, and I. M. Nikonov, Parity and Patterns in Low-Dimensional Topology (Cambridge Sei. Publ., Cambridge, 2015). · Zbl 1387.57025
[10] I. M. Nikonov, “A New Proof of Vassiliev’s Conjecture,” J. Knot Theory and its Ramifications 23 (7), (2014). · Zbl 1302.05043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.