zbMATH — the first resource for mathematics

Remarks on uniform bundles on projective spaces. (English) Zbl 1401.14188
If \(k\) is an algebraically closed field, a rank \(r\) vector bundle \({\mathcal E}\) on the projective space \({\mathbb P}^d\) is said to be uniform if for all lines \(L\) in \({\mathbb P}^d\), in the decomposition of the restriction \({\mathcal E}|_L\simeq \bigoplus_{1\leq i\leq r}{\mathcal O}_{{\mathbb P}^1}(a_i)\), the set of integers \(a_1,\ldots, a_r\) does not change. A vector bundle on \({\mathbb P}^d\) is said to be homogeneous if it is isomorphic to all its pullbacks by automorphisms of \({\mathbb P}^d\). Every homogeneous bundle is uniform, but there exist uniform bundles that are not homogeneous. When the characteristic of the base field \(k\) is positive, H. Lange [Manuscr. Math. 29, No. 1, 11–28 (1979; Zbl 0439.14001)] and L. Ein [Math. Ann. 254, No. 1, 53–72 (1980; Zbl 0431.14003)] have shown that uniform bundles of rank \(r\leq d\) on \({\mathbb P}^d\) are homogeneous. The main results of the paper under review exhibit uniform non-homogeneous rank \(d+1\) bundles on a projective space \({\mathbb P}^d\), where \(d\geq 2\), over an algebraically closed field of positive characteristic. The examples are obtained by constructing rank \(d+1\) uniform but not homogeneous toric bundles on the projective space \({\mathbb P}^d\), viewed as a toric variety. The bundles in these examples are adequate extensions of the Frobenius pullback of the tangent bundle on \({\mathbb P}^d\). Note that when the base field has characteristic zero, E. Ballico [Tsukuba J. Math. 72, No. 2, 215–226 (1983; Zbl 0532.14006)] has shown that all rank \(d+1\) uniform bundles on \({\mathbb P}^d\) are homogeneous.
14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14G17 Positive characteristic ground fields in algebraic geometry
Full Text: DOI
[1] Ballico, E., Uniform vector bundles of rank \((n+ 1)\) on \({\mathbb{P}}^n\), Tsukuba J. Math., 7, 215-226, (1983) · Zbl 0532.14006
[2] Brown, K.: Cohomology of Groups, GTM 87. Springer, New York (1982)
[3] Brun, J.; Hirschowitz, A., Droites de saut des fibrés stables de rang élevé sur \({\mathbb{P}}^2\), Mathematische Zeitschrift, 181, 171-178, (1982) · Zbl 0473.14005
[4] Ven, V., On uniform vector bundles, Mathematische Annalen, 195, 245-248, (1971) · Zbl 0215.43202
[5] Drézet, J.: Exemples de fibrés uniformes non homogènes sur \({\mathbb{P}^n}\). C. R. Acad. Sci. Paris Sér. A 291, 125-128 (1980)
[6] Ein, L., Stable vector bundles on projective spaces in char \(p>0\), Mathematische Annalen, 254, 53-72, (1980) · Zbl 0431.14003
[7] Elencwajg, G., Les fibrés uniformes de rang 3 sur \({\mathbb{P}}^2({\mathbb{C}})\) sont homogènes, Mathematische Annalen, 231, 217-227, (1978) · Zbl 0378.14003
[8] Elencwajg, G., Des fibrés uniformes non homogènes, Mathematische Annalen, 239, 185-192, (1979) · Zbl 0498.14007
[9] Fujino, O., Multiplication maps and vanishing theorems for toric varieties, Mathematische Zeitschrift, 257, 631-641, (2007) · Zbl 1129.14029
[10] Hering, M.; Mustaţă, M.; Payne, M., Positivity properties of toric vector bundles, Annales de L’institut Fourier, 60, 607-640, (2010) · Zbl 1204.14024
[11] Klyachko, A., Equivariant vector bundles on toral varieties, Math. USSR-Izv., 35, 337-375, (1990) · Zbl 0706.14010
[12] Lange, H., On stable and uniform rank-2 vector bundles on \({\mathbb{P}}^2\) in characteristic \(p\), Manuscripta Mathematica, 29, 11-28, (1979) · Zbl 0432.14010
[13] Langer, A., Moduli spaces of sheaves and principal G-bundles, Proc. Symp. Pure Math., 80, 273-308, (2009) · Zbl 1179.14010
[14] Okonek, C., Schneider, M., Spindler, H.: Vector Bundles on Complex Projective Spaces: With an Appendix by S.I. Gelfand. Springer, New York (2011) · Zbl 1237.14003
[15] Sato, E., Uniform vector bundles on a projective space, J. Math. Soc. Jpn., 28, 123-132, (1976) · Zbl 0315.14003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.