×

zbMATH — the first resource for mathematics

Local well-posedness of the \((4 + 1)\)-dimensional Maxwell-Klein-Gordon equation at energy regularity. (English) Zbl 1402.35273
Summary: This paper is the first part of a trilogy [the authors, Am. J. Math. 140, No. 1, 1–82 (2018; Zbl 1392.35309); Invent. Math. 205, No. 3, 781–877 (2016; Zbl 1364.35198)] dedicated to a proof of global well-posedness and scattering of the \((4+1)\)-dimensional mass-less Maxwell-Klein-Gordon equation (MKG) for any finite energy initial data. The main result of the present paper is a large energy local well-posedness theorem for MKG in the global Coulomb gauge, where the lifespan is bounded from below by the energy concentration scale of the data. Hence the proof of global well-posedness is reduced to establishing non-concentration of energy. To deal with non-local features of MKG we develop initial data excision and gluing techniques at critical regularity, which might be of independent interest.

MSC:
35Q61 Maxwell equations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Bahouri, H; Gérard, P, High frequency approximation of solutions to critical nonlinear wave equations, Am. J. Math., 121, 131-175, (1999) · Zbl 0919.35089
[2] Bogovskiĭ, ME, Solution of the first boundary value problem for an equation of continuity of an incompressible medium, Dokl. Akad. Nauk SSSR, 248, 1037-1040, (1979)
[3] Bogovskiĭ, M.E.: Solutions of some problems of vector analysis, associated with the operators div and grad. Theory of cubature formulas and the application of functional analysis to problems of mathematical physics. Trudy Sem. S. L. Soboleva, No. 1, vol. 1980. Akad. Nauk SSSR Sibirsk. Otdel. Inst. Mat., Novosibirsk, 149, pp. 5-40 (1980) · Zbl 1406.35181
[4] Chruściel, P.T., Delay, E.: On mapping properties of the general relativistic constraints operator in weighted function spaces, with applications. Mém. Soc. Math. Fr. (N.S.), no. 94 (2003) · Zbl 0499.58019
[5] Corvino, J, Scalar curvature deformation and a gluing construction for the Einstein constraint equations, Commun. Math. Phys., 214, 137-189, (2000) · Zbl 1031.53064
[6] Corvino, J; Schoen, RM, On the asymptotics for the vacuum Einstein constraint equations, J. Differ. Geom., 73, 185-217, (2006) · Zbl 1122.58016
[7] Cuccagna, S, On the local existence for the Maxwell-Klein-Gordon system in \(R^{3+1}\), Commun. PDE, 24, 851-867, (1999) · Zbl 0929.35151
[8] Delay, E, Smooth compactly supported solutions of some underdetermined elliptic PDE, with gluing applications, Commun. Partial Differ. Equ., 37, 1689-1716, (2012) · Zbl 1268.58018
[9] Eardley, DM; Moncrief, V, The global existence of Yang-Mills-Higgs fields in \(4\)-dimensional Minkowski space. I. local existence and smoothness properties, Commun. Math. Phys., 83, 171-191, (1982) · Zbl 0496.35061
[10] Eardley, DM; Moncrief, V, The global existence of Yang-Mills-Higgs fields in \(4\)-dimensional Minkowski space. II. completion of proof, Commun. Math. Phys., 83, 193-212, (1982) · Zbl 0496.35062
[11] Isett, P., Oh, S.-J.: Hölder continuous Euler flows with compact support and the conservation of angular momentum. arXiv:math.AP/1402.2305v1 (2014)
[12] Keel, M; Roy, T; Tao, T, Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm, Discr. Contin. Dyn. Syst., 30, 573-621, (2011) · Zbl 1228.35241
[13] Kenig, CE; Merle, F, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., 166, 645-675, (2006) · Zbl 1115.35125
[14] Kenig, CE; Merle, F, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation, Acta Math., 201, 147-212, (2008) · Zbl 1183.35202
[15] Klainerman, S; Machedon, M, On the Maxwell-Klein-Gordon equation with finite energy, Duke Math. J., 74, 19-44, (1994) · Zbl 0818.35123
[16] Klainerman, S; Tataru, D, On the optimal local regularity for Yang-Mills equations in \({ R^{4+1}}\), J. Am. Math. Soc., 12, 93-116, (1999) · Zbl 0924.58010
[17] Krieger, J; Lührmann, J, Concentration compactness for the critical Maxwell-Klein-Gordon equation, Annals of PDE, 1, 1-208, (2015) · Zbl 1406.35181
[18] Krieger, J., Schlag, W.: Concentration Compactness for Critical Wave Maps. EMS Publishing House, Zurich (2009) · Zbl 1387.35006
[19] Krieger, J., Sterbenz, J., Tataru, D.: Global well-posedness for the Maxwell-Klein Gordon equation in \(4+1\) dimensions. Small Energy. arXiv:org (2012) · Zbl 1329.35209
[20] Machedon, M; Sterbenz, J, Almost optimal local well-posedness for the \((3+1)\)-dimensional Maxwell-Klein-Gordon equations, J. Am. Math. Soc., 17, 297-359, (2004) · Zbl 1048.35115
[21] Moncrief, V, Global existence of Maxwell-Klein-Gordon fields in \((2+1)\)-dimensional spacetime, J. Math. Phys., 21, 2291-2296, (1980)
[22] Oh, S.-J., Tataru, D.: Energy dispersed solutions for the \((4+1)\)-dimensional Maxwell-Klein-Gordon equation. Preprint (2015) · Zbl 1392.35309
[23] Oh, S.-J., Tataru, D.: Global well-posedness and scattering of the \((4+1)\)-dimensional Maxwell-Klein-Gordon equation. Preprint (2015) · Zbl 1364.35198
[24] Rodnianski, I; Tao, T, Global regularity for the Maxwell-Klein-Gordon equation with small critical Sobolev norm in high dimensions, Commun. Math. Phys., 251, 377-426, (2004) · Zbl 1106.35073
[25] Segal, I, The Cauchy problem for the Yang-Mills equations, J. Funct., 33, 175-194, (1979) · Zbl 0416.58027
[26] Selberg, S, Almost optimal local well-posedness of the Maxwell-Klein-Gordon equations in \(1+4\) dimensions, Commun. Partial Differ. Equ., 27, 1183-1227, (2002) · Zbl 1013.35077
[27] Selberg, S; Tesfahun, A, Finite-energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge, Commun. Partial Differ. Equ., 35, 1029-1057, (2010) · Zbl 1193.35164
[28] Sterbenz, J, Global regularity and scattering for general non-linear wave equations II. (4+1) dimensional Yang-Mills equations in the Lorentz gauge, Am. J. Math., 129, 611-664, (2007) · Zbl 1117.58015
[29] Sterbenz, J; Tataru, D, Energy dispersed large data wave maps in \(2+1\) dimensions, Commun. Math. Phys., 298, 139-230, (2010) · Zbl 1218.35129
[30] Sterbenz, J; Tataru, D, Regularity of wave-maps in dimension \(2+1\), Commun. Math. Phys., 298, 231-264, (2010) · Zbl 1218.35057
[31] Tao, T, Global regularity of wave maps II. small energy in two dimensions, Commun. Math. Phys., 224, 443-544, (2001) · Zbl 1020.35046
[32] Tao, T.: Nonlinear dispersive equations. In: CBMS Regional Conference Series in Mathematics, vol. 106. Local and Global Analysis. Published for the Conference Board of the Mathematical Sciences, Washington, DC (2006) · Zbl 1106.35001
[33] Tao, T.: Global regularity of wave maps III. Large energy from \(R^{1+2}\) to hyperbolic spaces. arXiv.org (2008) · Zbl 0496.35062
[34] Tao, T.: Global regularity of wave maps IV. Absence of stationary or self-similar solutions in the energy class. arXiv:org (2008) · Zbl 0496.35061
[35] Tao, T.: Global regularity of wave maps V. Large data local wellposedness and perturbation theory in the energy class. arXiv:org (2008) · Zbl 1268.58018
[36] Tao, T.: Global regularity of wave maps VI. Abstract theory of minimal-energy blowup solutions. arXiv:org (2009) · Zbl 0929.35151
[37] Tao, T.: Global regularity of wave maps VII. Control of delocalised or dispersed solutions. arXiv:org (2009) · Zbl 1122.58016
[38] Tataru, D, On global existence and scattering for the wave maps equation, Am. J. Math., 123, 37-77, (2001) · Zbl 0979.35100
[39] Tataru, D, Rough solutions for the wave maps equation, Am. J. Math., 127, 293-377, (2005) · Zbl 1330.58021
[40] Taylor, M.E.: Partial Differential Equations I. Basic Theory, 2nd edn. Applied Mathematical Sciences, vol. 115. Springer, New York (2011) · Zbl 1206.35002
[41] Uhlenbeck, KK, Connections with \(L^{p}\) bounds on curvature, Commun. Math. Phys., 83, 31-42, (1982) · Zbl 0499.58019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.