# zbMATH — the first resource for mathematics

An $$A$$-invariant subspace for bipartite distance-regular graphs with exactly two irreducible $$T$$-modules with endpoint 2, both thin. (English) Zbl 1404.05042
Summary: Let $$\Gamma$$ denote a bipartite distance-regular graph with vertex set $$X$$, diameter $$D \geq 4$$, and valency $$k \geq 3$$. Let $$\mathbb{C}^X$$ denote the vector space over $$\mathbb{C}$$ consisting of column vectors with entries in $$\mathbb{C}$$ and rows indexed by $$X$$. For $$z \in X$$, let $$\widehat{z}$$ denote the vector in $$\mathbb{C}^X$$ with a 1 in the $$z$$-coordinate, and 0 in all other coordinates. Fix a vertex $$x$$ of $$\Gamma$$ and let $$T = T(x)$$ denote the corresponding Terwilliger algebra. Assume that up to isomorphism there exist exactly two irreducible $$T$$-modules with endpoint 2, and they both are thin. Fix $$y \in X$$ such that $$\partial(x,y)=2$$, where $$\partial$$ denotes path-length distance. For $$0 \leq i$$, $$j \leq D$$ define $$w_{ij}=\sum \widehat{z}$$, where the sum is over all $$z \in X$$ such that $$\partial (x,z)=i$$ and $$\partial (y,z)=j$$. We define $$W=\operatorname{span}\{w_{ij} \mid 0 \leq i,j \leq D\}$$. In this paper we consider the space $$MW=\operatorname{span}\{mw \mid m \in M, w \in W\}$$, where $$M$$ is the Bose-Mesner algebra of $$\Gamma$$. We observe that $$MW$$ is the minimal $$A$$-invariant subspace of $$\mathbb{C}^X$$ which contains $$W$$, where $$A$$ is the adjacency matrix of $$\Gamma$$. We show that $$4D-6 \leq \operatorname{dim}(MW) \leq 4D-2$$. We display a basis for $$MW$$ for each of these five cases, and we give the action of $$A$$ on these bases.

##### MSC:
 05C12 Distance in graphs
Full Text:
##### References:
 [1] Bannai, E., Ito, T.: Algebraic Combinatorics I: Association Schemes. Benjamin-Cummings, vol. 58, Menlo Park (1984) · Zbl 0555.05019 [2] Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, Berlin (1989) [3] Curtin, B., 2-homogeneous bipartite distance-regular graphs, Discrete Math., 187, 39-70, (1998) · Zbl 0958.05143 [4] Curtin, B., Almost 2-homogeneous bipartite distance-regular graphs, Eur. J. Comb., 21, 865-876, (2000) · Zbl 1002.05069 [5] Curtin, B., Bipartite distance-regular graphs I, Graphs Comb., 15, 143-158, (1999) · Zbl 0927.05083 [6] Curtin, B., Bipartite distance-regular graphs II, Graphs Comb., 15, 377-391, (1999) · Zbl 0939.05088 [7] Curtin, B., The local structure of a bipartite distance-regular graph, Eur. J. Comb., 20, 739-758, (1999) · Zbl 0940.05074 [8] Curtin, B., Almost $$2$$-homogeneous bipartite distance-regular graphs, Eur. J. Comb., 21, 865-876, (2000) · Zbl 1002.05069 [9] Curtis, C.W., Reiner, I.: Representation Theory of Finite Groups and Associative Algebras. Interscience Publishers, New York (1962) · Zbl 0131.25601 [10] Go, J., The Terwilliger algebra of the hypercube, Eur. J. Comb., 23, 399-429, (2002) · Zbl 0997.05097 [11] MacLean, M., An inequality involving two eigenvalues of a bipartite distance-regular graph, Discrete Math., 225, 193-216, (2000) · Zbl 1001.05124 [12] MacLean, M., Taut distance-regular graphs of odd diameter, J. Algebra Comb., 17, 125-147, (2003) · Zbl 1014.05072 [13] MacLean, M.; Terwilliger, P., Taut distance-regular graphs and the subconstituent algebra, Discrete Math., 306, 1694-1721, (2006) · Zbl 1100.05104 [14] MacLean, M.; Terwilliger, P., The subconstituent algebra of a bipartite distance-regular graph: thin modules with endpoint two, Discrete Math., 308, 1230-1259, (2008) · Zbl 1136.05076 [15] MacLean, M., A new approach to the Bipartite Fundamental Bound, Discrete Math., 312, 3195-3202, (2012) · Zbl 1254.05054 [16] MacLean, M., A new characterization of taut distance-regular graphs of odd diameter, Discrete Math., 315-316, 18-28, (2014) · Zbl 1278.05251 [17] MacLean, M., The local eigenvalues of a bipartite distance-regular graph, Eur. J. Comb., 45, 115-123, (2015) · Zbl 1304.05095 [18] MacLean, M.; Miklavič, Š, On bipartite distance-regular graphs with exactly two irreducible $$T$$-modules with endpoint two, Linear Algebra Appl., 515, 275-297, (2017) · Zbl 1352.05196 [19] Miklavič, Š, On bipartite $$Q$$-polynomial distance-regular graphs, Eur. J. Comb., 28, 94-110, (2007) · Zbl 1200.05262 [20] Miklavič, Š, $$Q$$-polynomial distance-regular graphs with $$a_1=0$$ and $$a_2 \ne 0$$, Eur. J. Comb., 30, 192-207, (2009) · Zbl 1228.05318 [21] Terwilliger, P., The subconstituent algebra of an association scheme (Part I), J. Algebra Comb., 1, 363-388, (1992) · Zbl 0785.05089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.