×

Dark states in quantum photosynthesis. (English) Zbl 1404.92019

Mondaini, Rubem P. (ed.), Trends in biomathematics: modeling, optimization and computational problems. Selected works from the 17th BIOMAT consortium lectures, Moscow, Russia, October 30 – November 3, 2017. Cham: Springer; Rio de Janeiro: BIOMAT Consortium, International Institute for Interdisciplinary Sciences (ISBN 978-3-319-91091-8/hbk; 978-3-319-91092-5/ebook). 13-26 (2018).
Summary: A dynamics of quantum thermodynamic machine given by open three level quantum system is considered. The system interacts with nonequilibrium environment described by three quantum fields in temperature states with different temperatures (one of the fields can also contain coherent component). One of the energy levels of the system is degenerate, this level interacts with two quantum fields in different ways (interactions are described by non-parallel “bright” vectors). We show that in this system the non-decaying so-called “dark” states are generated, this can be considered as effect of “leakage” in quantum thermodynamic machine. We discuss manipulations for these states using quantum dissipative dynamics. Possible application of this model to quantum photosynthesis is discussed.
For the entire collection see [Zbl 1401.92005].

MSC:

92C05 Biophysics
92C40 Biochemistry, molecular biology
81V80 Quantum optics
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] G.S. Engel, T.R. Calhoun, E.L. Read, T.K. Ahn, T. Mancal, Y.C. Cheng, R.E. Blankenship, G.R. Fleming, Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782-786 (2007)
[2] G.D. Scholes, G.R. Fleming, A. Olaya-Castro, R. van Grondelle, Lessons from nature about solar light harvesting. Nat. Chem. 3, 763-774 (2011)
[3] M. Mohseni, P. Rebentrost, S. Lloyd, A. Aspuru-Guzik, Environment-assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys. 129, 174106 (2008)
[4] M. Mohseni, Y. Omar, G. Engel, M.B. Plenio (eds.), \(Quantum Effects in Biology\) (Cambridge University Press, Cambridge, 2014)
[5] M. Ohya, I. Volovich, \(Mathematical Foundations of Quantum Information and Computation and Its Applications to Nano- and Bio-systems\) (Springer, Berlin, 2011) · Zbl 1269.81002
[6] L. Accardi, L.Y. Gang, I. Volovich, \(Quantum Theory and Its Stochastic Limit\) (Springer, Berlin, 2002) · Zbl 1140.81307
[7] L. Accardi, S.V. Kozyrev, Lectures on quantum interacting particle systems, in \(QP-PQ: Quantum Probability and White Noise Analysis - Vol. 14 Quantum Interacting Particle Systems\) (World Scientific Publishing, Singapore, 2002)
[8] M.O. Scully, M.S. Zubairy, \(Quantum Optics\) (Cambridge University Prress, Cambridge, 1997)
[9] M. Fleischhauer, M.D. Lukin, Dark-State polaritons in electromagnetically induced transparency, Phys. Rev. Lett. 84, 5094 (2000). arXiv:quant-ph/0001094
[10] S.V. Kozyrev, A.A. Mironov, A.E. Teretenkov, I.V. Volovich, Flows in nonequilibrium quantum systems and quantum photosynthesis. Infin. Dimens. Anal. Quantum. Probab. Relat. Top. 20, 175002 (2017). arXiv:1612.00213 [quant-ph] · Zbl 1386.81107
[11] L. Accardi, K. Imafuku, S.V. Kozyrev, Interaction of 3-level atom with radiation. Opt. Spectrosc. 94(6), 904-910 (2003)
[12] C.-K. Chan, G.-D. Lin, S.F. Yelin, M.D. Lukin, Quantum interference between independent reservoirs in open quantum systems. Phys. Rev. A89, 042117 (2014)
[13] I.Y. Aref’eva, I.V. Volovich, S.V. Kozyrev, Stochastic limit method and interference in quantum many-particle systems. Theor. Math. Phys. 183(3), 782-799 (2015) · Zbl 1327.81310
[14] R. Monshouwer, M. Abrahamsson, F. van Mourik, R. van Grondelle, Superradiance and exciton delocalization in bacterial photosynthetic light-harvesting systems, J. Phys. Chem. B101, 7241-7248 (1997)
[15] A. Olaya-Castro, C.F. Lee, F.F. Olsen, N.F. Johnson, Efficiency of energy transfer in a light-harvesting system under quantum coherence. Phys. Rev. B78, 085115 (2008)
[16] S. Lloyd, M. Mohseni, Symmetry-enhanced supertransfer of delocalized quantum states. New J. Phys. 12, 075020 (2010). arXiv:1005.2579
[17] D.F. Abasto, M. Mohseni, S. Lloyd, P. Zanardi, Exciton diffusion length in complex quantum systems: the effects of disorder and environmental fluctuations on symmetry-enhanced supertransfer. Philos. Trans. R. Soc. A370, 3750-3770 (2012)
[18] M. Ferretti, R. Hendrikx, E. Romero, J. Southall, R.J. Cogdell, V.I. Novoderezhkin, G.D. Scholes, R. van Grondelle, Dark states in the light-harvesting complex 2 revealed by two-dimensional electronic spectroscopy. Sci. Rep. 6, 20834 (2016)
[19] H. Dong, D.-Z. Xu, J.-F. Huang, C.-P. Sun, Coherent excitation transfer via the dark-state channel in a bionic system. Light Sci. Appl. 1, e2 (2012)
[20] S.V. Kozyrev, Ultrametricity in the theory of complex systems. Theor. Math. Phys. 185(2), 346-360 (2015) · Zbl 1342.93018
[21] A.S. Trushechkin, I.V. Volovich, Perturbative treatment of inter-site couplings in the local description of open quantum networks. Europhys. Lett. 113(3), 30005 (2016)
[22] L. Accardi, S.V. Kozyrev, A.N. Pechen, Coherent quantum control of Λ-atoms through the stochastic limit, in \(Quantum Information and Computing, QP-PQ: Quantum Probability and White Noise Analysis - Vol. 19\), ed. by L. Accardi, M. Ohya, N. Watanabe (World Scientific, Singapore, 2006), pp. 1-17. arXiv:quant-ph/0403100 · Zbl 1152.81665
[23] I.V. Volovich, Cauchy-Schwarz inequality-based criteria for non-classicality of sub-Poisson and antibunched light. Phys. Lett. A380(1-2), 56-58 (2016) · Zbl 1377.81266
[24] I.V. Volovich, S.V. Kozyrev, Manipulation of states of a degenerate quantum system. Proc. Steklov Inst. Math. 294, 241-251 (2016) · Zbl 1358.81132
[25] R.H. Dicke, Coherence in spontaneous radiation processes. Phys. Rev. 93, 99 (1954) · Zbl 0055.21702
[26] I.V. Volovich, Models of quantum computers and decoherence problem, in \(Quantum Information (Nagoya, 1997)\) (World Scientific Publishing, River Edge, 1999), pp. 211-224. arXiv:quant-ph/9902055 · Zbl 0986.81018
[27] A.N. Pechen, N.B. Il’in, Existence of traps in the problem of maximizing quantum observable averages for a qubit at short times. Proc. Steklov Inst. Math. 289, 213-220 (2015) · Zbl 1337.81039
[28] A. Pechen, A. Trushechkin, Measurement-assisted Landau-Zener transitions. Phys. Rev. A91(5), 52316 (2015)
[29] A.N. Pechen, N.B. Il’in, On the problem of maximizing the transition probability in an n-level quantum system using nonselective measurements. Proc. Steklov Inst. Math. 294, 233-240 (2016) · Zbl 1358.81016
[30] A.N. Pechen, N.B. Il’in, Control landscape for ultrafast manipulation by a qubit. J. Phys. A50(7), 75301 (2017) · Zbl 1360.81115
[31] G.G. Amosov, S.N. Filippov, Spectral properties of reduced fermionic density operators and parity superselection rule. Quantum Inf. Process 16(1), 2 (2017) · Zbl 1373.81099
[32] G. Vattay, S.A. Kauffman, Evolutionary design in biological quantum computing (2013). arXiv:1311.4688 [cond-mat.dis-nn]
[33] A.S. Holevo, Gaussian optimizers and the additivity problem in quantum information theory. Russ. Math. Surv. 70(2), 331-367 (2015) · Zbl 1380.81051
[34] M.E. Shirokov, On quantum zero-error capacity. Russ. Math. Surv. 70(1), 176-178 (2015) · Zbl 1397.94039
[35] I. Aref’eva, I. Volovich, Holographic photosynthesis (2016). arXiv:1603.09107
[36] I.Y. Aref’eva, Formation time of quark-gluon plasma in heavy-ion collisions in the holographic shock wave model. Theor. Math. Phys. 184(3), 1239-1255 (2015). arXiv:1503.02185 · Zbl 1335.81130
[37] I. Aref’eva, Multiplicity and thermalization time in heavy-ions collisions, in \(19-th International Seminar on High Energy Physics (QUARKS-2016)\), Peterburg, May 29-June 4 2016. EPJ Web of Conferences, vol. 125 (2016), p. 1007. doi:  https://doi.org/10.1051/epjconf/201612501007
[38] I.Y. Aref’eva, M.A. Khramtsov, AdS/CFT prescription for angle-deficit space and winding geodesics, J. High Energy Phys. 4, 121 (2016). arXiv:1601.0200
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.