Guillera, Jesús WZ pairs and \(q\)-analogues of Ramanujan series for \(1/\pi\). (English) Zbl 1405.11021 J. Difference Equ. Appl. 24, No. 12, 1871-1879 (2018). Summary: We prove \(q\)-analogues of two Ramanujan-type series for \(1/\pi\) from \(q\)-analogues of ordinary WZ pairs. Cited in 15 Documents MSC: 11B65 Binomial coefficients; factorials; \(q\)-identities 33C20 Generalized hypergeometric series, \({}_pF_q\) 33F10 Symbolic computation of special functions (Gosper and Zeilberger algorithms, etc.) 33D15 Basic hypergeometric functions in one variable, \({}_r\phi_s\) Keywords:hypergeometric series; WZ and \(q\)-WZ pairs; \(q\)-identities; supercongruences PDF BibTeX XML Cite \textit{J. Guillera}, J. Difference Equ. Appl. 24, No. 12, 1871--1879 (2018; Zbl 1405.11021) Full Text: DOI arXiv References: [1] Amdeberhan, T.; Zeilberger, D., Hypergeometric acceleration via the WZ-method, Electron. J. Combin., 4, 4 (1997) · Zbl 0884.05010 [2] Guillera, J., Generators of some Ramanujan formulas, Ramanujan J., 11, 41-48 (2006) · Zbl 1109.33029 [3] Guillera, J., Series de Ramanujan: Generalizaciones y conjeturas, Ph.D. diss., Universidad de Zaragoza, Spain, 2007. [4] Guo, V.; Liu, J. C., q-analogues of two Ramanujan-type formulas for \(####\), J. Differ. Equ. Appl., 24, 1368-1373 (2018) · Zbl 1444.11036 [5] Guo, V. and Zudilin, W., A q-microscope for supercongruences. Preprint available at . [6] Guo, V.; Zudilin, W., Ramanujan-type formulas for \(####\): q-analogues, Integr. Tranforms Spec. Funct., 29, 505-513 (2018) · Zbl 1436.11024 [7] Zeilberger, D., Closed form (pun intended!), Contemp. Math., 143, 579-608 (1993) · Zbl 0808.05010 [8] Zudilin, W., Ramanujan-type supercongruences, J. Number Theory, 129, 1848-1857 (2009) · Zbl 1231.11147 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.