×

Some remarks on dynamical system of solenoids. (English) Zbl 1405.37022

Summary: We show that a solenoid is a dynamical object and we express its complexity by a number of different entropy-like quantities in Hurley’s sense. Some relations between these entropy-like quantities are presented. We adopt the theory of Carathéodory dimension structures introduced axiomatically by Pesin to a case of a solenoid. Any of the above mentioned entropy-like quantities determines a particular Carathéodory structure such that its upper capacity coincides with the considered quantity. We mimic a definition of the local measure entropy, introduced by {M. Brin} and {A. Katok} [Lect. Notes Math. 1007, 30–38 (1983; Zbl 0533.58020)] for a single map, to a case of a solenoid. Lower estimations of these quantities by corresponding local measure entropies are described.

MSC:

37B40 Topological entropy
37B45 Continua theory in dynamics
28D20 Entropy and other invariants
54H20 Topological dynamics (MSC2010)
54F45 Dimension theory in general topology

Citations:

Zbl 0533.58020

References:

[1] J. P. Boroński and P. Oprocha, On entropy of graph maps that give hereditarily indecomposable inverse limits, J. Dynam. Differential Equations 29 (2017), no. 2, 685-699. · Zbl 1377.37024
[2] M. Brin and A. Katok, On local entropy, in: Geometric Dynamics (Rio de Janeiro, 1981), 30-38, Lecture Notes in Math. 1007, Springer, Berlin, 1983. · Zbl 0533.58020
[3] W.-C. Cheng and S. E. Newhouse, Pre-image entropy, Ergodic Theory Dynam. Systems 25 (2005), no. 4, 1091-1113. · Zbl 1098.37012 · doi:10.1017/S0143385704000240
[4] M. Hurley, On topological entropy of maps, Ergodic Theory Dynam. Systems 15 (1995), no. 3, 557-568. · Zbl 0833.54021
[5] W. T. Ingram and W. S. Mahavier, Inverse Limits: From continua to chaos, Developments in Mathematics 25, Springer, New York, 2012. · Zbl 1234.54002
[6] J. Kwapisz, Homotopy and dynamics for homeomorphisms of solenoids and Knaster continua, Fund. Math. 168 (2001), no. 3, 251-278. · Zbl 0984.37018 · doi:10.4064/fm168-3-3
[7] R. Langevin and F. Przytycki, Entropie de l’image inverse d’une application, Bull. Soc. Math. France 120 (1992), no. 2, 237-250. · Zbl 0757.58023 · doi:10.24033/bsmf.2185
[8] R. Langevin and P. Walczak, Entropie d’une dynamique, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 1, 141-144. · Zbl 0723.54020
[9] M. Lyubich and Y. Minsky, Laminations in holomorphic dynamics, J. Differential Geom. 47 (1997), no. 1, 17-94. · Zbl 0910.58032 · doi:10.4310/jdg/1214460037
[10] J.-H. Ma and Z.-Y. Wen, A Billingsley type theorem for Bowen entropy, C. R. Math. Acad. Sci. Paris 346 (2008), no. 9-10, 503-507. · Zbl 1138.37007
[11] M. C. McCord, Inverse limit sequences with covering maps, Trans. Amer. Math. Soc. 114 (1965), 197-209. · Zbl 0136.43603 · doi:10.1090/S0002-9947-1965-0173237-0
[12] Z. Nitecki and F. Przytycki, Preimage entropy for mappings, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), no. 9, 1815-1843. · Zbl 1089.37506 · doi:10.1142/S0218127499001309
[13] Y. B. Pesin, Dimension Theory in Dynamical Systems: Contemporary views and applications, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997. · Zbl 0895.58033
[14] P. Raith, Two commuting interval maps with entropy zero whose composition has positive topological entropy, in: Iteration Theory (ECIT ’02), 351-354, Grazer Math. Ber. 346, Karl-Franzens-Univ. Graz, Graz, 2004. · Zbl 1072.37031
[15] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747-817. · Zbl 0202.55202 · doi:10.1090/S0002-9904-1967-11798-1
[16] D. Sullivan, Bounds, quadratic differential, and renormalization conjectures, in: American Mathematical Society centennial publications, Vol. II (Providence, RI, 1988), 417-466, Amer. Math. Soc., Providence, RI, 1992. · Zbl 0936.37016
[17] ——–, Solenoidal manifolds, J. Singul. 9 (2014), 203-205. · Zbl 1323.57018
[18] L. Vietoris, Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen, Math. Ann. 97 (1927), no. 1, 454-472. · JFM 53.0552.01
[19] P. Walters, An Introduction to Ergodic Theory, Granduate Texts in Mathematics 79, Springer-Verlag, New York-Berlin, 1982. · Zbl 0475.28009
[20] R. F. Williams, Expanding attractors, Inst. Hautes Études Sci. Publ. Math. 43 (1974), 169-203. · Zbl 0279.58013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.