zbMATH — the first resource for mathematics

Numerical modeling of the intracranial pressure using Windkessel models. (English) Zbl 1405.76073
Summary: The intracranial pressure (ICP) is an important factor in the proper functioning of the brain. This pressure is needed to be constantly regulated, since an abnormal elevation can be quite dangerous. In this article, we develop some numerical tools to better understand the regulation of this pressure. In particular, as it is impossible to measure the ICP in a non-invasive way, these numerical tools can allow to estimate values of the ICP. In addition, we propose to compute the dynamics of the cerebrospinal fluid (CSF), taking into account the connected environment of the skull and the arterio-venous flows. A computational fluid dynamics model in two dimensions is developed for the cerebrospinal fluid system, with Windkessel type boundary conditions. This model shows that the dynamics can impact the distribution of the CSF in the different compartments of the cerebrospinal system.
76Z05 Physiological flows
FreeFem++; MIPAV
Full Text: DOI
[1] M.J. Albeck, S.E. Børgesen, F. Gjerris, J.F. Schmidt & P.S. Sørensen, “Intracranial pressure and cerebrospinal fluid outflow conductance in healthy subjects”, J. Neurosurg.74 (1991) no. 4, p. 597-600
[2] N. Alperin, M. Mazda, T. Lichtor & S.H. Lee, “From cerebrospinal fluid pulsation to noninvasive intracranial compliance and pressure measured by MRI flow studies”, Curr. Med. Imaging Rev.2 (2006) no. 1, p. 117-129
[3] O. Balédent, C. Gondry-Jouet, M.E. Meyer, G. De Marco, D. Le Gars, M.C. Henry-Feugeas & I. Idy-Peretti, “Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and patients with communicating hydrocephalus”, Invest. Radiol.39 (2004) no. 1, p. 45-55
[4] O. Balédent, I. Idy-Peretti & MC Henry-Feugeas, “Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation”, Invest. Radiol.36 (2001) no. 7, p. 368-377
[5] R. Bouzerar, M. Czosnyka, Z. Czosnyka & O. Balédent, Physical Phantom of Craniospinal Hydrodynamics, Springer, 2012
[6] J. Cahouet & J.-P. Chabard, “Some fast 3D finite element solvers for the generalized Stokes problem”, International Journal for Numerical Methods in Fluids8 (1988) no. 8, p. 869-895 · Zbl 0665.76038
[7] E.R. Cardoso, J.O. Rowan & S. Galbraith, “Analysis of the cerebrospinal fluid pulse wave in intracranial pressure”, J. Neurosurg.59 (1983) no. 5, p. 817-821
[8] M. Czosnyka & J.D. Pickard, “Monitoring and interpretation of intracranial pressure”, J. Neurol. Neurosurg. Psychiatry75 (2004) no. 6, p. 813-821
[9] J. Fouchet-Incaux, C. Grandmont & S. Martin, “Numerical Stability of Coupling Schemes in the 3D/0D Modelling of Air Flows and Blood Flows”, HAL-01095960v1 (2015)
[10] S. Garnotel, Modélisation numérique de la pression intracrâcranienne via les écoulements du liquide cérébrospinal et du sang mesurés par IRM de flux, Ph. D. Thesis, UPJV, 2016
[11] S. Garnotel, S. Salmon & O. Balédent, “Numerical Cerebrospinal System Modeling in Fluid- Structure Interaction”, HAL-01427455 (2017)
[12] D. Greitz, “Radiological assessment of hydrocephalus: New theories and implications for therapy”, Neurosurg. Rev.27 (2004) no. 3, p. 145-165
[13] F. Hecht, “New development in Freefem++”, J. Numer. Math.20 (2012) no. 3-4, p. 251-265 · Zbl 1266.68090
[14] A.A. Linninger, M. Xenos, D.C. Zhu, M.R. Somayaji, S. Kondapalli & R.D. Penn, “Cerebrospinal fluid flow in the normal and hydrocephalic human brain”, IEEE Trans. Biomed. Eng.54 (2007) no. 2, p. 291-302
[15] A. Marmarou, M. Bergsneider, N. Relkin, P. Klinge & P. Black, “Development of guidelines for idiopathic normal-pressure hydrocephalus: introduction”, Neurosurgery57 (2005) no. 3, p. S2-1
[16] A. Marmarou, K. Shulman & J. LaMorgese, “Compartmental Analysis of Compliance and Outflow Resistance of the Cerebrospinal Fluid System”, J. Neurosurg.43 (1975), p. 523-534
[17] A. Marmarou, K. Shulman & R.M. Rosende, “A Nonlinear Analysis of the Cerebrospinal Fluid System and Intracranial Pressure Dynamics”, J. Neurosurg.48 (1978) no. 3, p. 332-344
[18] M. McAuliffe, “Medical image processing, analysis, and visualization (MIPAV)”, National Institutes of Health (2009)
[19] G. Pagé, S. Fall, R. Bouzerar, A. Heintz, S. Delepierre & O. Balédent, In-vitro assessment of high resolution PC-MRI, in ECR 2015, 2015
[20] A. Quarteroni, Numerical Models for Differential Problems 2, Springer, 2009
[21] S. Qvarlander, B. Lundkvist, L.-O D. Koskinen, J. Malm & A. Eklund, “Pulsatility in CSF dynamics: pathophysiology of idiopathic normal pressure hydrocephalus”, J. Neurol. Neurosurg. Psychiatry84 (2013) no. 7, p. 735-741
[22] J.E. Roberts & J.M. Thomas, “Mixed and hybrid methods”, Handb. Numer. Anal.2 (1991), p. 523-639 · Zbl 0875.65090
[23] K. Sagawa, R.K. Lie & J. Schaefer, “Translation of Otto frank’s paper “Die Grundform des arteriellen Pulses” Zeitschrift für biologie 37: 483-526 (1899)”, J. Mol. Cell. Cardiol22 (1990) no. 3, p. 253-254
[24] S. El Sankari, C. Gondry-Jouet, A. Fichten, O. Godefroy, J-M. Serot, H. Deramond, M.E. Meyer, O. Balédent & , “Cerebrospinal fluid and blood flow in mild cognitive impairment and Alzheimer’s disease: a differential diagnosis from idiopathic normal pressure hydrocephalus”, Fluids Barriers CNS8 (2011) no. 1
[25] M. Ursino & C.A. Lodi, “A simple mathematical model of the interaction between intracranial pressure and cerebral hemodynamics”, J. Appl. Physiol.82 (1997) no. 4, p. 1256-1269
[26] I.E. Vignon-Clementel, C. A. Figueroa, K. E. Jansen & C. A. Taylor, “Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries”, Computer Methods in Applied Mechanics and Engineering195 (2006) no. 29-32, p. 3776 -3796 Published by · Zbl 1175.76098
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.