Hurder, Steven; Rechtman, Ana Aperiodicity at the boundary of chaos. (English) Zbl 1409.37042 Ergodic Theory Dyn. Syst. 38, No. 7, 2683-2728 (2018). Summary: We consider the dynamical properties of \(C^{\infty}\)-variations of the flow on an aperiodic Kuperberg plug \(\mathbb{K}\). Our main result is that there exists a smooth one-parameter family of plugs \(\mathbb{K}_{\epsilon}\) for \(\epsilon\in (-a,a)\) and \(a<1\), such that: (1) the plug \(\mathbb{K}_{0}=\mathbb{K}\) is a generic Kuperberg plug; (2) for \(\epsilon<0\), the flow in the plug \(\mathbb{K}_{\epsilon}\) has two periodic orbits that bound an invariant cylinder, all other orbits of the flow are wandering, and the flow has topological entropy zero; (3) for \(\epsilon>0\), the flow in the plug \(\mathbb{K}_{\epsilon}\) has positive topological entropy, and an abundance of periodic orbits. MSC: 37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.) 37B40 Topological entropy Keywords:Kuperberg plug; periodic orbits; topological entropy × Cite Format Result Cite Review PDF Full Text: DOI arXiv Link References: [1] Bowen, R., Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 153, 401-414, (1971) · Zbl 0212.29201 · doi:10.1090/S0002-9947-1971-0274707-X [2] Edwards, R., Millett, K. and Sullivan, D.. Foliations with all leaves compact. Topology16 (1977), 13-32. doi:10.1016/0040-9383(77)90028-3 · Zbl 0356.57022 [3] Epstein, D. B. A. and Vogt, E.. A counterexample to the periodic orbit conjecture in codimension 3. Ann. of Math. (2)108 (1978), 539-552. doi:10.2307/1971187 · Zbl 0418.57013 [4] Ghys, É., Construction de champs de vecteurs sans orbite périodique (d’après Krystyna Kuperberg), Séminaire Bourbaki, Vol. 1993/94, Exp. No. 785, Astérisque, 227, 283-307, (1995) · Zbl 0846.57019 [5] Hurder, S. and Rechtman, A.. The dynamics of generic Kuperberg flows. Astérisque377 (2016), 1-250. · Zbl 1380.37001 [6] Hurder, S. and Rechtman, A.. Perspectives on Kuperberg flows. Preprint, 2016, arXiv:1607.00731, submitted. · Zbl 1454.37024 [7] Katok, A., Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. Inst. Hautes Études Sci., 51, 137-173, (1980) · Zbl 0445.58015 · doi:10.1007/BF02684777 [8] Kuperberg, K., A smooth counterexample to the Seifert conjecture, Ann. of Math. (2), 140, 723-732, (1994) · Zbl 0856.57024 · doi:10.2307/2118623 [9] Kuperberg, G. and Kuperberg, K.. Generalized counterexamples to the Seifert conjecture. Ann. of Math. (2)144 (1996), 239-268. doi:10.2307/2118592 · Zbl 0856.57026 [10] Matsumoto, S.. K. M. Kuperberg’s C∞ counterexample to the Seifert conjecture. Sūgaku, Math. Soc. Japan47 (1995), 38-45; Translation: Sugaku expositions, Amer. Math. Soc.11, (1998) 39-49. · Zbl 0887.57030 [11] Matsumoto, S., The unique ergodicity of equicontinuous laminations, Hokkaido Math. J., 39, 389-403, (2010) · Zbl 1213.37044 · doi:10.14492/hokmj/1288357974 [12] Sullivan, D., A counterexample to the periodic orbit conjecture, Publ. Math. Inst. Hautes Études Sci., 46, 5-14, (1976) · Zbl 0372.58011 · doi:10.1007/BF02684317 [13] Walters, P., An Introduction to Ergodic Theory, (1982), Springer: Springer, New York · Zbl 0475.28009 · doi:10.1007/978-1-4612-5775-2 [14] Wilson, F. W. Jr, On the minimal sets of non-singular vector fields, Ann. of Math. (2), 84, 529-536, (1966) · Zbl 0156.43803 · doi:10.2307/1970458 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.