×

The properties of the weighted space \(H_{2,\alpha }^k(\Omega )\) and weighted set \(W_{2,\alpha }^k(\Omega ,\delta )\). (English) Zbl 1411.46032

Summary: We study the properties of the weighted space \(H_{2,\alpha }^k(\Omega )\) and weighted set \(W_{2,\alpha }^k(\Omega ,\delta )\) for boundary value problem with singularity.

MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems

Software:

FEAPpv
PDFBibTeX XMLCite
Full Text: Link

References:

[1] Apel, T., Sändig, A-M., Whiteman, J.R.: Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains. Math. Methods Appl. Sci., 19, 1, 1996, 63-85, | · Zbl 0838.65109 · doi:10.1002/(SICI)1099-1476(19960110)19:13.0.CO;2-S
[2] Arroyo, D., Bespalov, A., Heuer, N.: On the finite element method for elliptic problems with degenerate and singular coefficients. Math. Comp., 76, 258, 2007, 509-537, | · Zbl 1112.65116 · doi:10.1090/S0025-5718-06-01910-7
[3] Assous, F., Ciarlet, J., Garcia, E., Segré, J.: Time-dependent Maxwell’s equations with charges in singular geometries. Comput. Methods Appl. Mech. Engrg., 196, 1–3, 2006, 665-681, | · Zbl 1121.78305 · doi:10.1016/j.cma.2006.07.007
[4] Assous, F., Jr, P. Ciarlet, Segré, J.: Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains: the singular complement method. J. Comput. Phys., 161, 1, 2000, 218-249, | · Zbl 1007.78014 · doi:10.1006/jcph.2000.6499
[5] Belytschko, T., Gracie, R., Ventura, G.: A review of extended generalized finite element methods for material modeling. Model. Simul. Sci. Eng., 17, 4, 2009, 043001, · Zbl 1195.74201 · doi:10.1088/0965-0393/17/4/043001
[6] Bordas, S., Duflot, M., Le, P.: A simple error estimator for extended finite elements. Int. J. Numer. Methods Eng., 24, 2008, 961-971, | · Zbl 1156.65093 · doi:10.1002/cnm.1001
[7] Byfut, A., Schrödinger, A.: hp-Adaptive extended finite element method. Int. J. Numer. Methods Eng., 89, 2012, 1392-1418, | · Zbl 1242.74099 · doi:10.1002/nme.3293
[8] Costabel, M., Dauge, M.: Weighted regularization of Maxwell equations in polyhedral domains. Numer. Math., 93, 2, 2002, 239-277, | · Zbl 1019.78009 · doi:10.1007/s002110100388
[9] Costabel, M., Dauge, M., Schwab, C.: Exponential convergence of hp-FEM for Maxwell equations with weighted regularization in polygonal domains. Math. Models Methods Appl. Sci., 15, 4, 2005, 575-622, | · Zbl 1078.65089 · doi:10.1142/S0218202505000480
[10] Ivannikov, V., Tiago, C., Almeida, J.P. Moitinho de, Díez, P.: Meshless methods in dual analysis: theoretical and implementation issues. Proceedings of the V International Conference on Adaptive Modeling and Simulation (ADMOS 2011), Paris, France, 2011, 291-308,
[11] Li, H., Nistor, V.: Analysis of a modified Schrödinger operator in 2D: regularity, index, and FEM. J. Comput. Appl. Math., 224, 1, 2009, 320-338, | · Zbl 1165.65079 · doi:10.1016/j.cam.2008.05.009
[12] Liu, G.R., Nguyen-Thoi, T.: Smoothed finite elements methods. 2010, CRC Press/Taylor & Francis Group,
[13] Morin, P., Hochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Rev., 44, 5, 2002, 631-658, | · Zbl 1016.65074 · doi:10.1137/S0036144502409093
[14] Nguyen-Xuana, H., Liuc, G.R., Bordasd, S., Natarajane, S., Rabczukf, T.: An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order. Comput. Methods Appl .Mech. Engrg., 253, 2013, 252-273, | · Zbl 1297.74126 · doi:10.1016/j.cma.2012.07.017
[15] Nguyen-Thoi, T., Vu-Do, H., Rabczuk, T., Nguyen-Xuan, H.: A node-based smoothed finite element method (NS-FEM) for upper bound solution to visco-elastoplastic analyses of solids using triangular and tetrahedral meshes. Comput. Methods Appl. Mech. Engrg., 199, 2010, 3005-3027, | · Zbl 1231.74432 · doi:10.1016/j.cma.2010.06.017
[16] Nguyen, V.P., Rabczuk, T., Bordas, S., Dufolt, M.: Meshless methods: A review and computer implementation aspects. Math. Comput. Simulation., 79, 2008, 763-813, | · Zbl 1152.74055 · doi:10.1016/j.matcom.2008.01.003
[17] Rukavishnikov, V.A.: On the differential properties of \(R_ν \)-generalized solution of Dirichlet problem. Dokl. Akad. Nauk., 309, 6, 1989, 1318-1320,
[18] Rukavishnikov, V.A.: On the existence and uniqueness of an \(R_ν \)-generalized solution of a boundary value problem with uncoordinated degeneration of the input data. Dokl. Math., 90, 2, 2014, 562-564, | · Zbl 1308.35059 · doi:10.1134/S1064562414060155
[19] Rukavishnikov, V.A., Mosolapov, A.O.: New numerical method for solving time-harmonic Maxwell equations with strong singularity. J. Comput. Phys., 231, 6, 2012, 2438-2448, | · Zbl 1242.78031 · doi:10.1016/j.jcp.2011.11.031
[20] Rukavishnikov, V.A, Mosolapov, A.O: Weighted edge finite element method for Maxwell’s equations with strong singularity. Dokl. Math., 87, 2, 2013, 156-159, | · Zbl 1281.78015 · doi:10.1134/S1064562413020105
[21] Rukavishnikov, V.A., Nikolaev, S.G.: On the \(R_ν \)-generalized solution of the Lamé system with corner singularity. Dokl. Math., 92, 1, 2015, 421-423, | · Zbl 1328.35033 · doi:10.1134/S1064562415040080
[22] Rukavishnikov, V.A., Nikolaev, S.G.: Weighted finite element method for an elasticity problem with singularity. Dokl. Math., 88, 3, 2013, 705-709, | · Zbl 1299.74169 · doi:10.1134/S1064562413060215
[23] Rukavishnikov, V., Rukavishnikova, E.: On the existence and uniqueness of \(R_ν \)-generalized solution for Dirichlet problem with singularity on all boundary. Abstr. Appl. Anal. 2014, 2014, 568726, · Zbl 1474.35331
[24] Rukavishnikov, V.A., Rukavishnikova, E.I.: Dirichlet problem with degeneration of the input data on the boundary of the domain. Differ. Equ., 52, 5, 2016, 681-685, | · Zbl 1354.35032 · doi:10.1134/S0012266116050141
[25] Rukavishnikov, V.A., Rukavishnikova, H.I.: The finite element method for boundary value problem with strong singularity. J. Comput. Appl. Math., 234, 9, 2010, 2870-2882, | · Zbl 1194.65137 · doi:10.1016/j.cam.2010.01.020
[26] Rukavishnikov, V.A., Rukavishnikova, H.I.: On the error estimation of the finite element method for the boundary value problems with singularity in the Lebesgue weighted space. Numer. Funct. Anal. Optim., 34, 12, 2013, 1328-1347, | · Zbl 1286.65146 · doi:10.1080/01630563.2013.809582
[27] Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The finite element method: its basis and fundamentals. Sixth edition. 2005, Elsevier, · Zbl 1307.74005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.