×

zbMATH — the first resource for mathematics

Random replacements in Pólya urns with infinitely many colours. (English) Zbl 1412.60021
Summary: We consider the general version of Pólya urns recently studied by A. Bandyopadhyay and D. Thacker [“A new approach to Pólya urn schemes and its infinite color generalization”, Preprint, arXiv:1606.05317; Bernoulli 23, No. 4B, 3243–3267 (2017; Zbl 1407.60099)] and C. Mailler and J.-F. Marckert [Electron. J. Probab. 22, Paper No. 26, 33 p. (2017; Zbl 1358.60091)], with the space of colours being any Borel space \(S\) and the state of the urn being a finite measure on \(S\). We consider urns with random replacements, and show that these can be regarded as urns with deterministic replacements using the colour space \(S\times [0,1]\).

MSC:
60C05 Combinatorial probability
PDF BibTeX XML Cite
Full Text: DOI Euclid arXiv
References:
[1] Antar Bandyopadhyay and Debleena Thacker, Rate of convergence and large deviation for the infinite color Pólya urn schemes. Statist. Probab. Lett.92 (2014), 232-240. · Zbl 1320.60079
[2] Antar Bandyopadhyay and Debleena Thacker, Pólya urn schemes with infinitely many colors. Bernoulli23 (2017), no. 4B, 3243-3267. · Zbl 1407.60099
[3] Antar Bandyopadhyay and Debleena Thacker, A new approach to Pólya urn schemes and its infinite color generalization. Preprint, 2016. arXiv:1606.05317 · Zbl 1320.60079
[4] David Blackwell and James B. MacQueen, Ferguson distributions via Pólya urn schemes. Ann. Statist.1 (1973), 353-355. · Zbl 0276.62010
[5] Donald L. Cohn, Measure Theory, Birkhäuser, Boston, 1980. · Zbl 0436.28001
[6] F. Eggenberger and G. Pólya, Über die Statistik verketteter Vorgänge. Zeitschrift Angew. Math. Mech.3 (1923), 279-289. · JFM 49.0382.01
[7] Svante Janson, Gaussian Hilbert Spaces. Cambridge Univ. Press, Cambridge, UK, 1997.
[8] Svante Janson, Functional limit theorems for multitype branching processes and generalized Pólya urns. Stoch. Process. Appl.110 (2004), 177-245. · Zbl 1075.60109
[9] Svante Janson and Lutz Warnke. On the critical probability in percolation. Electronic J. Probability, 23 (2018), paper no. 1, 25 pp. · Zbl 1387.05239
[10] Olav Kallenberg. Foundations of Modern Probability. 2nd ed., Springer, New York, 2002. · Zbl 0996.60001
[11] Olav Kallenberg. Random Measures, Theory and Applications. Springer, Cham, Switzerland, 2017. · Zbl 1376.60003
[12] Hosam M Mahmoud, Pólya urn models. CRC Press, Boca Raton, FL, 2009. · Zbl 1149.60005
[13] Cécile Mailler and Jean-François Marckert. Measure-valued Pólya urn processes. Electron. J. Probab.22 (2017), no. 26, 1-33. · Zbl 1358.60091
[14] A. A. Markov, Sur quelques formules limites du calcul des probabilités. (Russian.) Bulletin de l’Académie Impériale des Sciences11 (1917), no. 3, 177-186.
[15] K. R. Parthasarathy, Probability Measures on Metric Spaces. Academic Press, New York, 1967. · Zbl 0153.19101
[16] Jim Pitman. Combinatorial Stochastic Processes. École d’Été de Probabilités de Saint-Flour XXXII - 2002. Lecture Notes in Math. 1875, Springer, Berlin, 2006. · Zbl 1103.60004
[17] G. Pólya, Sur quelques points de la théorie des probabilités. Ann. Inst. H. Poincaré1 (1930), no. 2, 117-161.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.