zbMATH — the first resource for mathematics

On coupling and “Vacant set level set” percolation. (English) Zbl 1412.60135
Summary: In this note we discuss “vacant set level set” percolation on a transient weighted graph. It interpolates between the percolation of the vacant set of random interlacements and the level set percolation of the Gaussian free field. We employ coupling and derive a stochastic domination from which we deduce in a rather general set-up a certain monotonicity property of the percolation function. In the case of regular trees this stochastic domination leads to a strict inequality between some eigenvalues related to Ornstein-Uhlenbeck semi-groups for which we have no direct analytical proof. It underpins a certain strict monotonicity property that has significant consequences for the percolation diagram. It is presently open whether a similar looking diagram holds in the case of \({\mathbb Z}^d\), \(d \ge 3\).

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60G15 Gaussian processes
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
82B43 Percolation
Full Text: DOI Euclid arXiv
[1] Abächerli, A. and Sznitman, A. S.: Level-set percolation for the Gaussian free field on a transient tree. Annales de l’Institut Henri Poincaré-Probabilités et Statistiques54, (2018), 173-201. · Zbl 1396.60099
[2] Aizenman, M. and Grimmett, G.: Strict monotonicity for critical points in percolation and ferromagnetic models. Journal of Statistical Physics63, (1991), 817-835.
[3] Černý, J. and Teixeira, A.: From random walk trajectories to random interlacements. Sociedade Brasileira de Matemática23, (2012), 1-78.
[4] Drewitz, A., Prévost, A. and Rodriguez, P.-F.: The sign clusters of the massless Gaussian free field percolate on \({\mathbb Z}^d, d\ge 3\) (and more). Commun. Math. Phys.362, (2018), 513-546. · Zbl 1394.60099
[5] Drewitz, A., Ráth, B. and Sapozhnikov, A.: An Introduction to Random Interlacements. SpringerBriefs in Mathematics, Berlin, (2014). · Zbl 1304.60008
[6] Folz, M.: Volume growth and stochastic completeness of graphs. Trans. Amer. Math. Soc.366, (2014), 2089-2119. · Zbl 1325.60069
[7] Lupu, T.: From loop clusters and random interlacement to the free field. Ann. Probab.44, (2016), 2117-2146. · Zbl 1348.60141
[8] Lupu, T., Sabot, Ch. and Tarrès, P.: Inverting the coupling of the signed Gaussian free field with a loop soup. Preprint, available at arXiv:1701.01092v1. · Zbl 1466.60153
[9] Marcus, M. B. and Rosen, J.: Markov processes, Gaussian processes, and local times. Cambridge University Press, (2006). · Zbl 1129.60002
[10] Matheron, G.: Random Sets and Integral Geometry. Wiley, New York, (1975). · Zbl 0321.60009
[11] Sabot, Ch. and Tarrès, P.: Inverting Ray-Knight identity. Probab. Theory Related Fields165, (2016), 559-580. · Zbl 1345.60097
[12] Sznitman, A. S.: An isomorphism theorem for random interlacements. Electron. Commun. Probab.17, (2012), 1-9. · Zbl 1247.60135
[13] Sznitman, A. S.: Coupling and an application to level-set percolation of the Gaussian free field. Electron. J. Probab.21, (2016), 1-26. · Zbl 1336.60194
[14] Teixeira, A.: Interlacement percolation on transient weighted graphs. Electron. J. Probab.14, (2009), 1604-1627. · Zbl 1192.60108
[15] Zhai, A.: Exponential concentration of cover times. Electron. J. Probab.23, (2018), 1-22. · Zbl 1391.60177
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.