×

zbMATH — the first resource for mathematics

Conference matrices with maximum excess and two-intersection sets. (English) Zbl 1414.05051
Summary: A two-intersection set with parameters \((j; \alpha, \beta)\) for a block design is a \(j\)-subset of the point set of the design, which intersects every block in \(\alpha\) or \(\beta\) points. In this paper, we show the existence of a two-intersection set with parameters \((2m^2-m + 1; m^2 m, m^2)\) for the block design obtained from translations of the set of nonzero squares in the finite field of order \(q = 4m^2+1\). As an application, we give a construction of conference matrices with maximums excess based on the two-intersection sets.
MSC:
05B05 Combinatorial aspects of block designs
PDF BibTeX XML Cite
Full Text: Link arXiv
References:
[1] B. Berndt, R. Evans, and K. S. Williams, Gauss and Jacobi Sums, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1998.
[2] M. R. Best, The excess of Hadamard matrix, Indag. Math. 39 (1977), 357-361. · Zbl 0366.05016
[3] A. E. Brouwer and W. H. Haemers, Spectra of Graphs, Springer, New York, 2012. · Zbl 1231.05001
[4] J. De Beule, J. Demeyer, K. Metsch, and M. Rodgers, A new family of tight sets in Q+(5, q), Des. Codes Cryptogr. 78 (2016), 655-678. · Zbl 1336.51002
[5] R. Craigen, Regular conference matrices and complex Hadamard matrices, Util. Math. 45 (1994), 65-69. · Zbl 0808.05022
[6] N. Farmakis and S. Kounias, The excess of Hadamard matrices and optimal designs, Discrete Math. 67 (1987), 165-176. · Zbl 0652.05006
[7] T. Feng, K. Momihara, and Q. Xiang, Cameron-Liebler line classes with parameter x =q221, J. Combin. Theory Ser. A 133 (2015), 307-338. · Zbl 1352.05195
[8] Y. J. Ionin and H. Kharaghani, Balanced generalized weighing matrices and conference matrices, in: C. J. Colbourn, J. H. Dinitz, (eds.) The CRC Handbook of Combinatorial Designs, 2nd edn, 306-313, Chapman & Hall/CRC, Boca Raton, FL, 2006.
[9] H. Kharaghani, A infinite class of Hadamard matrices of maximal excess, Discrete Math. 89 (1991), 307-312. · Zbl 0734.05028
[10] H. Kharaghani and J. Seberry, The excess of complex Hadamard matrices, Graphs Combin. 9 (1993), 47-56. · Zbl 0781.05008
[11] C. Koukouvinos and S. Kounias, Construction of some Hadamard matrices with maximum excess, Discrete Math. 85 (1990), 295-300. · Zbl 0732.05016
[12] C. Koukouvinos and J. Seberry, Hadamard matrices of order ⌘ 8 (mod 16) with maximal excess, Discrete Math. 92 (1991), 173-176. · Zbl 0762.05024
[13] R. Lidl, H. Niederreiter, Finite Fields, Cambridge University Press, Cambridge, 1997. INTEGERS: 17 (2017)14 · Zbl 0866.11069
[14] J. Seberry, Existence of SBIBD(4k2, 2k2± k, k2± k) and Hadamard matrices with maximal excess, Australas. J. Combin. 4 (1991), 87-91. · Zbl 0763.05016
[15] T. Storer, Cyclotomy and Di↵erence Sets, Lectures in Advanced Mathematics, Markham Publishing Company, Chicago, 1967.
[16] T. Xia, M. Xia, and J. Seberry, Regular Hadamard matrix, maximum excess and SBIBD, Australas. J. Combin. 27 (2003), 263-275. · Zbl 1027.05009
[17] Y. Zhu, Ei. Bannai, and Et. Bannai, Tight relative 2-designs on two shells in Johnson association schemes, Discrete Math. 339 (2016), 957-973. · Zbl 1327.05347
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.