×

zbMATH — the first resource for mathematics

Webs for permutation supermodules of type Q. (English) Zbl 1418.05130
Summary: We give a diagrammatic calculus for the intertwiners between permutation supermodules of the Sergeev superalgebra over the complex numbers. We also give a diagrammatic basis for the space of intertwiners between two permutation supermodules.
MSC:
05E10 Combinatorial aspects of representation theory
05A05 Permutations, words, matrices
16G99 Representation theory of associative rings and algebras
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Berele, A.; Regev, A., Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebras, Adv. Math., 64, 2, 118-175, (1987) · Zbl 0617.17002
[3] Brown, G.; Kujawa, J., Webs of type Q, J. Algebra Combin.
[4] Brundan, J.; Davidson, N., Categorical actions and crystals, Contemp. Math., 683, 116-159, (2017) · Zbl 1418.17053
[5] Brundan, J.; Ellis, A., Monoidal supercategories, Commun. Math. Phys., 351, 3, 1045-1089, (2017) · Zbl 1396.17012
[6] Brundan, J.; Kleshchev, A., Projective representations of symmetric groups via Sergeev duality, Math. Z., 239, 1, 27-68, (2002) · Zbl 1029.20008
[7] Cautis, S.; Kamnitzer, J.; Morrison, S., Webs and quantum skew Howe duality, Math. Ann., 360, 1-2, 351-390, (2014) · Zbl 1387.17027
[8] Cheng, S.-J.; Wang, W., Dualities and Representations of Lie Superalgebras, (2012), Providence, RI: American Mathematical Society, Providence, RI · Zbl 1271.17001
[9] Clark, S.; Peng, Y. N.; Thamrongpairoj, S. K., Super tableaux and a branching rule for the general linear Lie superalgebra, Lin. Multilin. Algebra, 63, 2, 274-282, (2015) · Zbl 1306.05246
[10] Doty, R.; Giaquinto, A., Presenting Schur algebras, Int. Math. Res. Notices, 2002, 36, 1907-1944, (2002) · Zbl 1059.16015
[11] Du, J.; Wan, J., Presenting queer Schur superalgebras, Int. Math. Res. Notices, 8, 2210-2272, (2015) · Zbl 1395.20032
[12] Du, J.; Wan, J., The queer q-Schur superalgebra, J. Aus. Math. Soc. · Zbl 06975559
[13] Haiman, M. D., On mixed insertion, symmetry, and shifted Young tableaux, J. Combin. Theory Series A, 50, 2, 196-225, (1989) · Zbl 0697.05005
[14] James, G. D., The Representation Theory of the Symmetric Groups, 682, (1978), Berlin Heidelberg: Springer-Verlag · Zbl 0393.20009
[15] Kleshchev, A., Linear and Projective Representations of Symmetric Groups. Cambridge Tracts in Mathematics, Vol, 163, (2005), New York: Cambridge University Press
[16] Kuperberg, G., Spiders for rank 2 Lie algebras, Commun. Math. Phys., 180, 1, 109-151, (1996) · Zbl 0870.17005
[17] La Scala, R.; Nardozza, V.; Senato, D., Super RSK-algorithms and super plactic monoid, Int. J. Algebra Comput., 16, 2, 377-396, (2006) · Zbl 1096.05052
[19] Olshanski, G. I., Quantized universal enveloping superalgebra of type Q and a super-extension of the Hecke algebra, Lett. Math. Phys., 24, 2, 93-102, (1992) · Zbl 0766.17017
[20] J. Pure Appl. Algebra
[21] Rose, D. E. V.; Tubbenhauer, D., Symmetric webs, Jones-Wenzl recursions and q-Howe duality, Int. Math. Res. Notices, 2016, 17, 5249-5290, (2016) · Zbl 1404.17025
[22] Sartori, A.; Tubbenhauer, D., Webs and q-Howe dualities in types BCD, Trans. Am. Math. Soc · Zbl 1472.17061
[23] Sergeev, A. N., Tensor algebra of the identity representation as a module over the Lie superalgebras GL(n, m) and Q(n), Math. Ussr. Sb., 51, 2, 419-427, (1985) · Zbl 0573.17002
[24] Sergeev, A. N., The Howe duality and the projective representations of symmetric groups, Rep. Theory, 3, 416-434, (1999) · Zbl 0999.17014
[25] Specht, W., Die irreduziblen Darstellungen der Symmetrischen Gruppe, Math. Z., 39, 1, 696-711, (1935) · Zbl 0011.10301
[26] Stembridge, J. R., Shifted tableaux and the projective representations of symmetric groups, Adv. Math., 74, 1, 87-134, (1989) · Zbl 0677.20012
[27] Algebr. Geom. Topol.
[28] Wan, J.; Wang, W., Lectures on spin representation theory of symmetric groups, Bull. Ins. Math. Acad. Sin., 7, 91-164, (2012) · Zbl 1280.20013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.