##
**Replica-nondiagonal solutions in the SYK model.**
*(English)*
Zbl 1418.83035

Summary: We study the SYK model in the large \(N\) limit beyond the replica-diagonal approximation. First we show that there are exact replica-nondiagonal solutions of the saddle point equations for \(q=2\) for any finite replica number \(M\). In the interacting \(q=4\) case we are able to construct the numerical solutions, which are in one-to-one correspondence to the analytic solutions of the quadratic model. These solutions are singular in the \(M \rightarrow 0\) limit in both quadratic and quartic interaction cases. The calculations of the on-shell action at finite integer \(M\) show that the nondiagonal replica-symmetric saddles are subleading in both quadratic and quartic cases. We also study replica-nondiagonal solutions of the SYK in the strong coupling limit. For arbitrary \(q\) we show that besides the usual solutions of the replica-diagonal saddle point equations in the conformal limit, there are also replica-nondiagonal solutions for any value of \(M\) (including zero). The specific configurations that we study, have factorized time and replica dependencies. The corresponding saddle point equations are separable at strong coupling, and can be solved using the Parisi ansatz from spin glass theory. We construct the solutions which correspond to the replica-symmetric case and to one-step replica symmetry breaking. We compute the regularizized free energy on these solutions in the limit of zero replicas. It is observed that there are nondiagonal solutions with the regularized free energy lower than that of the standard diagonal conformal solution.

### MSC:

83C80 | Analogues of general relativity in lower dimensions |

81T10 | Model quantum field theories |

62P35 | Applications of statistics to physics |

PDF
BibTeX
XML
Cite

\textit{I. Aref'eva} et al., J. High Energy Phys. 2019, No. 7, Paper No. 113, 59 p. (2019; Zbl 1418.83035)

### References:

[1] | S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett.70 (1993) 3339 [cond-mat/9212030] [INSPIRE]. |

[2] | A. Kitaev, A simple model of quantum holography, talks given at KITP, April 7 and May 27 (2015). |

[3] | J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev.D 94 (2016) 106002 [arXiv:1604.07818] [INSPIRE]. |

[4] | A. Kitaev and S.J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, JHEP05 (2018) 183 [arXiv:1711.08467] [INSPIRE]. · Zbl 1391.83080 |

[5] | G. Sárosi, AdS_{2}holography and the SYK model, PoSModave2017 (2018) 001 [arXiv:1711.08482] [INSPIRE]. |

[6] | S. Sachdev, Bekenstein-Hawking entropy and strange metals, Phys. Rev.X 5 (2015) 041025 [arXiv:1506.05111] [INSPIRE]. |

[7] | J. Polchinski and V. Rosenhaus, The spectrum in the Sachdev-Ye-Kitaev model, JHEP04 (2016) 001 [arXiv:1601.06768] [INSPIRE]. · Zbl 1388.81067 |

[8] | K. Jensen, Chaos in AdS_{2}holography, Phys. Rev. Lett.117 (2016) 111601 [arXiv:1605.06098] [INSPIRE]. |

[9] | J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two dimensional nearly Anti-de-Sitter space, PTEP2016 (2016) 12C104 [arXiv:1606.01857] [INSPIRE]. · Zbl 1361.81112 |

[10] | J. Engelsöy, T.G. Mertens and H. Verlinde, An investigation of AdS_{2}backreaction and holography, JHEP07 (2016) 139 [arXiv:1606.03438] [INSPIRE]. |

[11] | A. Jevicki, K. Suzuki and J. Yoon, Bi-local holography in the SYK model, JHEP07 (2016) 007 [arXiv:1603.06246] [INSPIRE]. · Zbl 1390.83116 |

[12] | D. Bagrets, A. Altland and A. Kamenev, Sachdev-Ye-Kitaev model as Liouville quantum mechanics, Nucl. Phys.B 911 (2016) 191 [arXiv:1607.00694] [INSPIRE]. |

[13] | T.G. Mertens, G.J. Turiaci and H.L. Verlinde, Solving the Schwarzian via the conformal bootstrap, JHEP08 (2017) 136 [arXiv:1705.08408] [INSPIRE]. · Zbl 1381.83089 |

[14] | D. Stanford and E. Witten, Fermionic localization of the Schwarzian theory, JHEP10 (2017) 008 [arXiv:1703.04612] [INSPIRE]. · Zbl 1383.83099 |

[15] | D.J. Gross and V. Rosenhaus, All point correlation functions in SYK, JHEP12 (2017) 148 [arXiv:1710.08113] [INSPIRE]. |

[16] | Y. Gu, X.-L. Qi and D. Stanford, Local criticality, diffusion and chaos in generalized Sachdev-Ye-Kitaev models, JHEP05 (2017) 125 [arXiv:1609.07832] [INSPIRE]. · Zbl 1380.81325 |

[17] | J.S. Cotler et al., Black holes and random matrices, JHEP05 (2017) 118 [Erratum ibid.09 (2018) 002] [arXiv:1611.04650] [INSPIRE]. |

[18] | J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE]. |

[19] | A.M. García-García and J.J.M. Verbaarschot, Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, Phys. Rev.D 94 (2016) 126010 [arXiv:1610.03816] [INSPIRE]. |

[20] | A. Georges, O. Parcollet and S. Sachdev, Quantum fluctuations of a nearly critical Heisenberg spin glass, Phys. Rev.B 63 (2001) 134406 [cond-mat/0009388]. |

[21] | W. Fu and S. Sachdev, Numerical study of fermion and boson models with infinite-range random interactions, Phys. Rev.B 94 (2016) 035135 [arXiv:1603.05246] [INSPIRE]. |

[22] | S. Caracciolo, M.A. Cardella and M. Pastore, Remarks on replica diagonal collective field condensations in SYK, arXiv:1807.10213 [INSPIRE]. |

[23] | J. Ye, Two indices Sachdev-Ye-Kitaev model, arXiv:1809.06667 [INSPIRE]. |

[24] | G. Gur-Ari, R. Mahajan and A. Vaezi, Does the SYK model have a spin glass phase?, JHEP11 (2018) 070 [arXiv:1806.10145] [INSPIRE]. |

[25] | D. Harlow and D. Jafferis, The factorization problem in Jackiw-Teitelboim gravity, arXiv:1804.01081 [INSPIRE]. |

[26] | P. Saad, S.H. Shenker and D. Stanford, A semiclassical ramp in SYK and in gravity, arXiv:1806.06840 [INSPIRE]. |

[27] | M. Mezard and G. Parisi, Replica field theory for random manifolds, LPTENS-90-28 (1991). |

[28] | M. Mezard, G. Parisi and M. Virasoro, Spin glass theory and beyond, World Scientific, Singapore (1987). |

[29] | C. De Dominicis and I. Giardina, Random fields and spin glasses: a field theory approach, Cambridge University Press, Cambridge U.K. (2006). |

[30] | R. Gurau, The iϵ prescription in the SYK model, J. Phys. Comm.2 (2018) 015003 [arXiv:1705.08581] [INSPIRE]. |

[31] | A. Kamenev, The SYK (Sachdev-Ye-Kitaev) model, talk given at the Steklov Mathematical Institute, Moscow, Russia (2018). |

[32] | I. Aref ’eva and I. Volovich, Notes on the SYK model in real time, Theor. Math. Phys.197 (2018) 1650 [arXiv:1801.08118] [INSPIRE]. |

[33] | J.L. van Hemmen and R.G. Palmer, The replica method and a solvable spin glass model, J. Phys.A 12 (1979) 4. |

[34] | D. Sherrington and S. Kirkpatrick, Solvable model of a spin-glass, Phys. Rev. Lett.35 (1975) 1792 [INSPIRE]. |

[35] | D. Anninos, T. Anous and F. Denef, Disordered quivers and cold horizons, JHEP12 (2016) 071 [arXiv:1603.00453] [INSPIRE]. |

[36] | J.M. Maldacena, Eternal black holes in Anti-de Sitter, JHEP04 (2003) 021 [hep-th/0106112] [INSPIRE]. |

[37] | P. Caputa et al., Scrambling time from local perturbations of the eternal BTZ black hole, JHEP08 (2015) 011 [arXiv:1503.08161] [INSPIRE]. |

[38] | V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev.D 61 (2000) 044007 [hep-th/9906226] [INSPIRE]. |

[39] | I.Ya. Aref’eva, M.A. Khramtsov and M.D. Tikhanovskaya, Improved image method for a holographic description of conical defects, Theor. Math. Phys.189 (2016) 1660 [Teor. Mat. Fiz.189 (2016) 296] [arXiv:1604.08905] [INSPIRE]. |

[40] | D.J. Gross and V. Rosenhaus, A generalization of Sachdev-Ye-Kitaev, JHEP02 (2017) 093 [arXiv:1610.01569] [INSPIRE]. |

[41] | A. Khrennikov, A. Radyna, Eigenvalues and invertibility of parisi matrices. Ultramentric group point of view, Adv. Stud. Cont. Math.8 (2004) 95. |

[42] | I.Ya. Aref’eva, M.A. Khramtsov, M.D. Tikhanovskaya and I.V. Volovich, On replica-nondiagonal large N saddles in the SYK model, EPJ Web Conf.191 (2018) 06007 |

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.