×

Breakage mechanics. I: Theory. (English) Zbl 1419.74047

Not reviewed. For part II, see [ibid. 55, No. 6, 1298-1320 (2007; Zbl 1419.74048)].

MSC:

74A45 Theories of fracture and damage
74E20 Granularity

Citations:

Zbl 1419.74048
Full Text: DOI

References:

[1] Bagi, K., Statistical analysis of contact force components in random granular assemblies, Granular Matter, 5, 45-54 (2003) · Zbl 1142.74317
[2] Bolton, M.D., 2000. The role of micro-mechanics in soil mechanics. In: CUED/D-Soils/TR13, Cambridge University Engineering Department, September 2000.; Bolton, M.D., 2000. The role of micro-mechanics in soil mechanics. In: CUED/D-Soils/TR13, Cambridge University Engineering Department, September 2000.
[3] Collins, I. F.; Einav, I., On the validity of elastic/plastic decompositions in soil mechanics. Elastoplasticity, (Tanaka, T.; Okayasu, T., Proceedings of the Symposium on Elastoplasticity (2005), Kyushu University: Kyushu University Japan), 193-200
[4] Coop, M.R., 2006. Limitations to critical state frameworks as applied to the behaviour of coarse grained soils. Keynote Lecture. In: International Symposium on Geomechanics and Geotechnical Particulate Media. IS-Yamaguchi, 12-14 September 2006, Ube, Japan.; Coop, M.R., 2006. Limitations to critical state frameworks as applied to the behaviour of coarse grained soils. Keynote Lecture. In: International Symposium on Geomechanics and Geotechnical Particulate Media. IS-Yamaguchi, 12-14 September 2006, Ube, Japan.
[5] Coop, M. R.; Lee, I. K., The behaviour of granular soils at elevated stresses: predictive soil mechanics, (Houlsby, G. T.; Schofield, A. N., Proceedings of Wroth Memorial Symposium (1993), Thomas Telford: Thomas Telford London), 186-198
[6] Coop, M. R.; Sorensen, K. K.; Bodas Freitas, T.; Georgoutsos, G., Particle breakage during shearing of a carbonate sand, Géotechnique, 54, 3, 157-163 (2004)
[7] Einav, I., 2006. Breakage mechanics—Part II: modelling granular materials. J. Mech. Phys. Solids, in press, doi:10.1016/j.jmps.2006.11.004; Einav, I., 2006. Breakage mechanics—Part II: modelling granular materials. J. Mech. Phys. Solids, in press, doi:10.1016/j.jmps.2006.11.004 · Zbl 1419.74048
[8] Einav I., Houlsby, G.T., Nguyen, D.G., 2006. Coupled damage and plasticity models derived from energy and dissipation potentials. Int. J. Solids Struct., doi:10.1016/j.ijsolstr.2006.07.019; Einav I., Houlsby, G.T., Nguyen, D.G., 2006. Coupled damage and plasticity models derived from energy and dissipation potentials. Int. J. Solids Struct., doi:10.1016/j.ijsolstr.2006.07.019 · Zbl 1122.74045
[9] Goddard, J. D., On entropy estimates of contact forces in static granular assemblies, Int. J. Solids Struct., 41, 5851-5861 (2004) · Zbl 1112.74362
[10] Hardin, B. O., Crushing of soil particles, J. Geotech. Eng. ASCE, 111, 10, 1177-1192 (1985)
[11] Harr, M. E., Mechanics of Particulate Media (1977), McGraw-Hill: McGraw-Hill New York
[12] Indraratna, B.; Salim, W., Modeling of particle breakage in coarse aggregates incorporating strength and dilatancy, Geotech. Eng., 155, 4, 243-252 (2002)
[13] Itasca Consulting Group. 2005. Particle Flow Code. Software Ver. 3.0.; Itasca Consulting Group. 2005. Particle Flow Code. Software Ver. 3.0.
[14] Kachanov, L. M., Time of the rupture process under creep conditions, IVZ Akad. Nauk, S.S.R. Otd Tech Nauk., 8, 26-31 (1958) · Zbl 0107.18501
[15] Lee, K. L.; Farhoomand, I., Compressibility and crushing of granular soil, Can. Geotech. J., 4, 1, 68-86 (1967)
[16] Lee, I. K.; Coop, M. R., The intrinsic behaviour of a decomposed granite soil, Géotechnique, 45, 3, 545-561 (1995)
[17] Lemaitre, J., A Course on Damage Mechanics (1992), Springer: Springer Berlin · Zbl 0756.73002
[18] Marsal, R. J., Mechanical properties of rockfill, (Hirschfield, R. C.; Poulos, S. J., Embankment Dam Engineering (1973), Wiley: Wiley NY), 109-200
[19] McDowell, G. R.; Bolton, M. D., On the micromechanics of crushable aggregates, Géotechnique, 48, 5, 667-679 (1998)
[20] McDowell, G. R.; Khan, J. J., Creep of granular materials, Granular Matter, 5, 3, 115-120 (2003)
[21] McDowell, G. R.; Bolton, M. D.; Robertson, D., The fractal crushing of granular materials, J. Mech. Phys. Solids, 44, 12, 2079-2102 (1996)
[22] Nakata, Y.; Hyde, A. F.L.; Hyodo, M.; Murata, H., A probabilistic approach to sand crushing in the triaxial test, Géotechnique, 49, 5, 567-583 (1999)
[23] Randolph, M.F., 2006. Personal communication, 5 September 2006.; Randolph, M.F., 2006. Personal communication, 5 September 2006.
[24] Sammis, C. G.; King, G.; Biegel, R., The kinematics of gouge deformations, Pure Appl. Geophys., 125, 777-812 (1987)
[25] Shahinpoor, M., Statistical mechanical considerations of the random packing of granular materials, Powder Technol., 25, 163-176 (1980)
[26] Simo, J. C.; Ju, J. W., Strain- and stress-based continuum damage models—I. Formulation, Int. J. Solids Struct., 23, 7, 821-840 (1987) · Zbl 0634.73106
[27] Tsoungui, O.; Vallet, D.; Charmet, J.-C., Numerical model of crushing of grains inside two-dimensional granular materials, Powder Technol., 105, 190-198 (1999)
[28] Turcotte, D. L., Fractals and fragmentation, J. Geophys. Res., 91, 1921-1926 (1986)
[29] Ueng, T.-S.; Chen, T.-J., Energy aspects of particle breakage in drained shear of sands, Géotechnique, 50, 1, 65-72 (2000)
[30] Walsh, S. D.C.; Tordesillas, A., A thermomechanical approach to the development of micropolar constitutive models for granular media, Acta Mechanica, 167, 3-4, 145-169 (2004) · Zbl 1064.74048
[31] Wood, D.M., 2006. Geomaterials with changing grading: a route towards modelling. In: International Symposium on Geomechanics Geotechnical Particulate Media. IS-Yamaguchi, 12-14 September 2006, Ube, Japan, pp. 313-316.; Wood, D.M., 2006. Geomaterials with changing grading: a route towards modelling. In: International Symposium on Geomechanics Geotechnical Particulate Media. IS-Yamaguchi, 12-14 September 2006, Ube, Japan, pp. 313-316.
[32] Zhukov, V.; Mizonov, V.; Filitcheve, P.; Bernotat, S., The modelling of grinding processes by means of the principle of maximum entropy, Powder Technol., 95, 248-253 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.