×

zbMATH — the first resource for mathematics

Garside combinatorics for Thompson’s monoid \(F^+\) and a hybrid with the braid monoid \(B_{\infty }^{+}\). (English) Zbl 1422.05106
Artin’s braid group \(B_n\) is known to be a group of fractions for the monoid \(B^+_n\) of positive \(n\)-strand braids. In its study, the Garside elements \(\Delta_n\) play an important role. On this model of simple braids, defined to be the left divisors of Garside’s elements \(\Delta_n\) in the monoid \(B^+_\infty\), the authors investigate simple elements in Thompson’s monoid \(F^+\) and in an hybrid of this monoid with \(B^+_\infty\). In both cases, we count how many simple elements left divide the right lcm of the first \(n-1\) atoms, and characterize their normal forms in terms of forbidden factors. In the case of \(H^+\), a generalized Pascal triangle appears. Moreover, the authors state very interesting open questions.
MSC:
05E15 Combinatorial aspects of groups and algebras (MSC2010)
20M05 Free semigroups, generators and relations, word problems
20E22 Extensions, wreath products, and other compositions of groups
20F36 Braid groups; Artin groups
68Q42 Grammars and rewriting systems
Software:
OEIS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adyan, Sergey I., Fragments of the word \(\Delta \) in the braid group, Mat. Zametki, 36, 1, 25-34, (1984) · Zbl 0599.20044
[2] Bétréma, Jean; Penaud, Jean-Guy, Animaux et arbres guingois, Theoret. Comput. Sci., 117, 1-2, 67-89, (1993) · Zbl 0780.68098
[3] Birman, Joan; Ko, Ki Hyoung; Lee, Sang Jin, A new approach to the word and conjugacy problems in the braid groups, Adv. Math., 139, 2, 322-353, (1998) · Zbl 0937.20016
[4] Brieskorn, Egbert; Saito, Kyoji, Artin-Gruppen und Coxeter-Gruppen, Invent. Math., 17, 245-271, (1972) · Zbl 0243.20037
[5] Brin, Matthew G., On the Zappa-Szép product, Comm. Algebra, 33, 2, 393-424, (2005) · Zbl 1078.20062
[6] Brin, Matthew G., The algebra of strand splitting. II. A presentation for the braid group on one strand, Internat. J. Algebra Comput., 16, 1, 203-219, (2006) · Zbl 1170.20306
[7] Brin, Matthew G., The algebra of strand splitting. I. A braided version of Thompson’s group \(V\), J. Group Theory, 10, 6, 757-788, (2007) · Zbl 1169.20021
[8] Cannon, James W.; Floyd, William. J.; Parry, Walter R., Introductory notes on Richard Thompson’s groups, Enseign. Math. (2), 42, 3-4, 215-256, (1996) · Zbl 0880.20027
[9] Clifford, Alfred H.; Preston, Gordon B., The algebraic theory of semigroups. Vol. I, 7, xv+224 p. pp., (1961), American Mathematical Society: American Mathematical Society, Providence, R.I. · Zbl 0111.03403
[10] Dehornoy, Patrick, Groups with a complemented presentation, J. Pure Appl. Algebra, 116, 1-3, 115-137, (1997) · Zbl 0870.20023
[11] Dehornoy, Patrick, The group of parenthesized braids, Adv. Math., 205, 2, 354-409, (2006) · Zbl 1160.20027
[12] Dehornoy, Patrick, The subword reversing method, Internat. J. Algebra Comput., 21, 1-2, 71-118, (2011) · Zbl 1256.20053
[13] Dehornoy, Patrick, Associahedra, Tamari lattices and related structures, 299, Tamari lattices and the symmetric Thompson monoid, 211-250, (2012), Birkhäuser/Springer: Birkhäuser/Springer, Basel · Zbl 1284.06004
[14] Dehornoy, Patrick, A cancellativity criterion for presented monoids, (2018)
[15] Dehornoy, Patrick; Digne, François; Godelle, Eddy; Krammer, Daan; Michel, Jean, Foundations of Garside theory, 22, xviii+691 p. pp., (2015), European Mathematical Society (EMS): European Mathematical Society (EMS), Zürich · Zbl 1370.20001
[16] Deligne, Pierre, Les immeubles des groupes de tresses généralisés, Invent. Math., 17, 4, 273-302, (1972) · Zbl 0238.20034
[17] Epstein, David B. A.; Cannon, James W.; Holt, Derek F.; Levy, Silvio V. F.; Paterson, Michael S.; Thurston, William P., Word processing in groups, xii+330 p. pp., (1992), Jones and Bartlett Publishers: Jones and Bartlett Publishers, Boston, MA · Zbl 0764.20017
[18] Garside, F. A., The braid group and other groups, Quart. J. Math. Oxford Ser. (2), 20, 1, 235-254, (1969) · Zbl 0194.03303
[19] Gouyou-Beauchamps, Dominique; Viennot, Gérard, Equivalence of the two-dimensional directed animal problem to a one-dimensional path problem, Adv. in Appl. Math., 9, 3, 334-357, (1988) · Zbl 0727.05036
[20] Holt, Derek F.; Rees, Sarah; Röver, Claas E., Groups, languages and automata, 88, xi+294 p. pp., (2017), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 06691444
[21] Newman, M. H. A., On theories with a combinatorial definition of “equivalence.”, Ann. of Math. (2), 43, 223-243, (1942) · Zbl 0060.12501
[22] Ore, Oystein, Linear equations in non-commutative fields, Ann. of Math. (2), 32, 3, 463-477, (1931) · Zbl 0001.26601
[23] Sloane, Neil J. A., The on-line encyclopedia of integer sequences, Notices Amer. Math. Soc., 65, 9, 1062-1074, (2018) · Zbl 1439.11001
[24] Szép, Jenö, On factorisable, not simple groups., Acta Sci. Math., 13, 239-241, (1950) · Zbl 0039.25503
[25] Terese, Term rewriting systems, 55, xxii+884 p. pp., (2003), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 1030.68053
[26] Tesson, Émilie, Un hybride du groupe de Thompson \(F\) et du groupe de tresses \(B_\infty \), (2018)
[27] Thompson, R. J., Tranformation structure of algebraic logic, (1979)
[28] Viennot, Gérard, Séminaire Bourbaki : volume 1983/84, exposés 615-632, 121-122, Problèmes combinatoires posés par la physique statistique, 225-246, (1985), Société mathématique de France · Zbl 0563.60095
[29] Zappa, Guido, Atti Secondo Congresso Un. Mat. Ital., Bologna, 1940, Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro, 119-125, (1942), Edizioni Cremonense: Edizioni Cremonense, Rome · Zbl 0026.29104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.