zbMATH — the first resource for mathematics

Vaisman-Gray manifold of pointwise holomorphic sectional conharmonic tensor. (English) Zbl 1422.53056
The authors discuss geometrical properties of Vaisman-Gray manifolds (VG manifolds).
Recall that in the adjoint \(G\)-structure space, an almost Hermitian manifold \((M,J,g)\) is called a Vaisman-Gray manifold if \(B^{abc}=-B^{bac}\) and \(B_c^{ab}=\theta^{[a}\delta_c^{b]}\), where \(B^{abc}=\frac i2 J^a_{[\hat b,\hat c]}\), \(B_c^{ab}=\frac i2 J^a_{\hat b,c}\) and \(\theta\) is the Lee form.
In particular the authors give necessary and sufficient conditions for a VG manifold to admit a pointwise holomorphic sectional conharmonic (PHT)-tensor, that is, a tensor satisfying \(\langle T(X,JX,X,JX,)\rangle=h\|X\|^4\). Moreover, conditions assuring that these manifolds are Einstein manifolds are established.

53C55 Global differential geometry of Hermitian and Kählerian manifolds
53B35 Local differential geometry of Hermitian and Kählerian structures
Full Text: DOI
[1] H. M. Abood and Y. A. Abdulameer, Conharmonically flat Vaisman-Gray manifold, Amer. J. Math. Stat., 7(1)(2017), 38-43.
[2] L. K. Ali, On almost K¨ahler manifold of a pointwise holomorphic sectional curvature tensor, Master’s thesis, University of Basra, College of Education, 2008.
[3] M. Banaru, A new characterization of the Gray-Hervella classes of almost Hermitian manifolds, 8th International Conference on Differential Geometry and its Applications, Opava-Czech Republic, August 27-31, 2001. Pointwise Holomorphic Sectional Conharmonic Tensor799
[4] A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Math. Pure Appl., 123(1980), 35-58. · Zbl 0444.53032
[5] L. A. Ignatochkina, Vaisman-Gray manifolds with a J -nvariant conformal curvature tensor, Sb. Math., 194(2)(2003), 225-235.
[6] Y. Ishi, On conharmonic transformations, Tensor (N.S.), 7(1957), 73-80.
[7] Q. Khan, On conharmonically and special weakly Ricci symmetric Sasakian manifolds, Novi Sad J. Math., 34(1)(2004), 71-77. · Zbl 1274.53071
[8] V. F. Kirichenko, Certain properties of tensors on K-spaces, Vestnik Moskov. Univ. Ser. I Mat. Meh., 30(1975), 78-85.
[9] V. F. Kirichenko, K-spaces of constant type, Sibirsk. Mat. Z., 17(1976), 282-289.
[10] V. F. Kirichenko, K-spaces of constant holomorphic sectional curvature, Mat. Zametki, 19(5)(1976), 805-814.
[11] V. F. Kirichenko, The differential geometry of K-spaces, Problems of Geometry, 8(1977), 139-161.
[12] V. F. Kirichenko and O. E. Arseneva, Self-dual geometry of generelized Hermitian surfaces, Sb. Math., 189(1)(1998), 19-44.
[13] V. F. Kirichenko and A. A. Shikhab, On the geometry of conharmonic curvature tensor of nearly K¨ahler manifolds, J. Math. Sci. (N.Y.), 177(2011), 675-683.
[14] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. I, John Wily and Sons, 1963. · Zbl 0119.37502
[15] J. L. Kozal, Varicies Kahlerian-notes, Sao Paolo, 1957.
[16] A. Z. Petrov, Einstein space, Phys-Math. Letr. Moscow, 1961.
[17] P. K. Rachevski, Riemannian geometry and tensor analysis, M. Nauka, 1964.
[18] E. V. Tretiakova, Curvature identities for almost K¨ahler manifold, VINITE, Moscow, No. 208-B99, 1999.
[19] F. O. Zengin and A. Y. Tasci, Pseudo Conharmonically Symmetric Manifolds, Eur. J. Pure Appl. Math., 7(3)(2014), 246-255. · Zbl 1389.53027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.