zbMATH — the first resource for mathematics

Critical multi-type Galton-Watson trees conditioned to be large. (English) Zbl 1422.60146
For a critical multi-type Galton-Watson tree with \(d\) types and offspring distribution \(p\) denote by \(m(i,j)\) the mean number of offsprings of type \(j\) for a single individual of type \(i\) under \(p\). Beside assuming aperiodicity of \(p\), and being critical and non-singular, the matrix \(M=(m(i,j):1 \leq i,j\leq d)\) encodes the main assumptions put on the process, which the authors propose to be minimal: \(M\) is primitive with largest in modulus eigenvalue \(1\) (criticality).
Main theorem: Assume that the number of individuals of each type becomes large in a way that the asymptotic portion of types follows the probabilities given by the normalized left eigenvector of the largest in modulus eigenvalue of \(M\). Then the sequence of subtrees conditioned on the increasing type sequences converges in distribution to a multi-type version of Kesten’s tree associated with the prescribed root-type distribution and \(p\).
For the proof of the main theorem, the authors generalize as prerequisites several limit theorems from the literature providing explicit proofs.

60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60B10 Convergence of probability measures
Full Text: DOI
[1] Abraham, R; Delmas, J-F, Local limits of conditioned Galton-Watson trees: the condensation case, Electron. J. Probab., 19, 1-29, (2014) · Zbl 1304.60091
[2] Abraham, R; Delmas, J-F, Local limits of conditioned Galton-Watson trees: the infinite spine case, Electron. J. Probab., 19, 1-19, (2014) · Zbl 1285.60085
[3] Athreya, K.B., Ney, P.E.: Branching Processes. Springer, Berlin (1972) · Zbl 0259.60002
[4] Auslender, A., Teboulle, M.: Asymptotic Cones and Functions in Optimization and Variational Inequalities. Springer, Berlin (2006) · Zbl 1017.49001
[5] Chaumont, L; Liu, R, Coding multitype forests: application to the law of the total population of branching forests, Trans. Am. Math. Soc., 368, 2723-2747, (2016) · Zbl 1342.60147
[6] Delmas, J-F; Hénard, O, A Williams decomposition for spatially dependent superprocesses, Electron. J. Probab., 18, 1-43, (2013) · Zbl 1294.60104
[7] Gnedenko, BV, On a local limit theorem of the theory of probability, Uspekhi Mat. Nauk, 3, 187-194, (1948)
[8] Gnedenko, B.V., Kolmogorov, A.N.: Limit Distributions for Sums of Independent Random Variables. English translation, Addison-Wesley, Cambridge (1954) · Zbl 0127.10602
[9] He, X.: Conditioning Galton-Watson trees on large maximal out-degree. J. Theor. Probab. (2016). doi:10.1007/s10959-016-0664-x
[10] Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis. Springer, Berlin (2001) · Zbl 0998.49001
[11] Hoeffding, W, Probability inequalities for sums of bounded random variables, J. Am. Stat. Assoc., 58, 13-30, (1963) · Zbl 0127.10602
[12] Janson, S, Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation, Probab. Surv., 9, 103-252, (2012) · Zbl 1244.60013
[13] Jonnson, T; Stefansson, S, Condensation in nongeneric trees, J. Stat. Phys., 142, 277-313, (2011) · Zbl 1225.60140
[14] Kesten, H, Subdiffusive behavior of random walk on a random cluster, Ann. de l’Inst. Henri Poincaré, 22, 425-487, (1986) · Zbl 0632.60106
[15] Kurtz, T., Lyons, R., Pemantle, R., Peres, Y.: A conceptual proof of the Kesten-Stigum theorem for multi-type branching processes. In: Classical and modern branching processes (Minneapolis, 1994), volume 84 of IMA Vol. Math. Appl., pp. 181-185. Springer (1997) · Zbl 0868.60068
[16] Luis, JAL-M; Gorostiza, G, The multitype measure branching process, Adv. Appl. Probab., 22, 49-67, (1990) · Zbl 0711.60084
[17] Miermont, G, Invariance principles for spatial multitype Galton-Watson trees, Ann. Inst. H. Poincaré Probab. Statist, 44, 1128-1161, (2007) · Zbl 1178.60058
[18] Neveu, J, Sur le théorème ergodique de chung-Erdős, C. R. Acad. Sci. Paris, 257, 2953-2955, (1963) · Zbl 0119.14002
[19] Pénisson, S, Beyond Q-process: various ways of conditioning the multitype Galton-Watson process, ALEA, 13, 223-237, (2016) · Zbl 1337.60215
[20] Rizzolo, D, Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set, Ann. de l’Inst. Henri Poincaré, 51, 512-532, (2015) · Zbl 1319.60170
[21] Rockafellar, R.T.: Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1997)
[22] Rvaceva, E, On domains of attraction of multi-dimensional distributions, Sel. Transl. Math. Stat. Probab., 2, 183-205, (1961)
[23] Spitzer, F.: Principles of Random Walk. Springer, Berlin (2013) · Zbl 0979.60002
[24] Stephenson, R.: Local convergence of large critical multi-type Galton-Watson trees and applications to random maps. J. Theor. Probab. (2016). doi:10.1007/s10959-016-0707-3 · Zbl 1393.05244
[25] Stone, C.: On local and ratio limit theorems. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 2, no. (part II), pp. 217-224. University of California Press, Berkeley, Los Angeles (1966)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.