zbMATH — the first resource for mathematics

Optimal policies in the Dasgupta-Heal-Solow-Stiglitz model under nonconstant returns to scale. (English. Russian original) Zbl 1422.91487
Proc. Steklov Inst. Math. 304, 74-109 (2019); translation from Tr. Mat. Inst. Steklova 304, 83-122 (2019).
Summary: The paper offers a complete mathematically rigorous analysis of the welfare-maximizing capital investment and resource depletion policies in the Dasgupta-Heal-Solow-Stiglitz model with capital depreciation and any returns to scale. We establish a general existence result and show that an optimal admissible policy may not exist if the output elasticity of the resource equals one. We characterize the optimal policies by applying an appropriate version of the Pontryagin maximum principle for infinite-horizon optimal control problems. We also discuss general methodological pitfalls arising in infinite-horizon optimal control problems for economic growth models, which are not paid due attention in the economic literature so that the results presented there often seem not to be rigorously justified. We finish the paper with an economic interpretation and a discussion of the welfare-maximizing policies.

91B62 Economic growth models
91B76 Environmental economics (natural resource models, harvesting, pollution, etc.)
49K15 Optimality conditions for problems involving ordinary differential equations
Full Text: DOI
[1] D. Acemoglu, Introduction to Modern Economic Growth (Princeton Univ. Press, Princeton, NJ, 2009). · Zbl 1158.91001
[2] Antweiler, W.; Trefler, D., Increasing returns and all that: A view from trade, Am. Econ. Rev., 92, 93-119, (2002)
[3] Arrazola, M.; Hevia, J., More on the estimation of the human capital depreciation rate, Appl. Econ. Lett., 11, 145-148, (2004)
[4] K. J. Arrow and M. Kurz, Public Investment, the Rate of Return, and Optimal Fiscal Policy (Johns Hopkins Press, Baltimore, MD, 1970).
[5] Aseev, S. M., On some properties of the adjoint variable in the relations of the Pontryagin maximum principle for optimal economic growth problems, Proc. Steklov Inst. Math., 287, s11-s21, (2014) · Zbl 1333.49036
[6] Aseev, S. M., Adjoint variables and intertemporal prices in infinite-horizon optimal control problems, Proc. Steklov Inst. Math., 290, 223-237, (2015) · Zbl 1330.49017
[7] Aseev, S.; Besov, K.; Kaniovski, S., The optimal use of exhaustible resources under nonconstant returns to scale, (2016)
[8] Aseev, S. M.; Besov, K. O.; Kryazhimskiy, A. V., Infinite-horizon optimal control problems in economics, Russ. Math. Surv., 67, 195-253, (2012) · Zbl 1248.49023
[9] Aseev, S. M.; Kryazhimskiy, A. V., The Pontryagin maximum principle and transversality conditions for a class of optimal control problems with infinite time horizons, SIAM J. Control Optim., 43, 1094-1119, (2004) · Zbl 1072.49015
[10] Aseev, S. M.; Kryazhimskii, A. V., The Pontryagin maximum principle and optimal economic growth problems, Proc. Steklov Inst. Math., 257, 1-255, (2007) · Zbl 1215.49001
[11] Aseev, S. M.; Veliov, V. M., Maximum principle for infinite-horizon optimal control problems with dominating discount, Dyn. Contin. Discrete Impuls. Syst., Ser. B: Appl. Algorithms, 19, 43-63, (2012) · Zbl 1266.49003
[12] Aseev, S. M.; Veliov, V. M.; Wolansky, G. (ed.); Zaslavski, A. J (ed.), Needle variations in infinite-horizon optimal control, (2014), Providence, RI · Zbl 1329.49005
[13] Aseev, S. M.; Veliov, V. M., Maximum principle for infinite-horizon optimal control problems under weak regularity assumptions, Proc. Steklov Inst. Math., 291, s22-s39, (2015) · Zbl 1336.49024
[14] Asheim, G. B.; Buchholz, W.; Withagen, C., The Hartwick rule: Myths and facts, Environ. Resour. Econ., 25, 129-150, (2003)
[15] Balder, E. J., An existence result for optimal economic growth problems, J. Math. Anal. Appl., 95, 195-213, (1983) · Zbl 0517.49002
[16] U. Bardi, The Limits to Growth Revisited (Springer, New York, 2011).
[17] Basu, S.; Fernald, J. G., Returns to scale in U.S. production: Estimates and implications, J. Polit. Econ., 105, 249-283, (1997)
[18] Beckerman, W., ‘Sustainable development’: Is it a useful concept?, Environ. Values, 3, 191-209, (1994)
[19] Benchekroun, H.; Withagen, C., The optimal depletion of exhaustible resources: A complete characterization, Resour. Energy Econ., 33, 612-636, (2011)
[20] Besov, K. O., On necessary optimality conditions for infinite-horizon economic growth problems with locally unbounded instantaneous utility function, Proc. Steklov Inst. Math., 284, 50-80, (2014) · Zbl 1310.91101
[21] Besov, K. O., On Balder’s existence theorem for infinite-horizon optimal control problems, Math. Notes, 103, 167-174, (2018) · Zbl 1393.49005
[22] D. A. Carlson, A. B. Haurie, and A. Leizarowitz, Infinite Horizon Optimal Control: Deterministic and Stochastic Systems (Springer, Berlin, 1991). · Zbl 0758.49001
[23] Cass, D., Optimum growth in an aggregative model of capital accumulation, Rev. Econ. Stud., 32, 233-240, (1965)
[24] L. Cesari, Optimization—Theory and Applications: Problems with Ordinary Differential Equations (Springer, New York, 1983). · Zbl 0506.49001
[25] Dasgupta, P.; Heal, G., The optimal depletion of exhaustible resources, Rev. Econ. Stud., 41, 3-28, (1974) · Zbl 0304.90018
[26] Fernald, J. G.; Jones, C. I., The future of US economic growth, Am. Econ. Rev., 104, 44-49, (2014)
[27] Groot, W., Empirical estimates of the rate of depreciation of education, Appl. Econ. Lett., 5, 535-538, (1998)
[28] Halkin, H., Necessary conditions for optimal control problems with infinite horizons, Econometrica, 42, 267-272, (1974) · Zbl 0301.90009
[29] Hall, C. A S.; Day, J. W., Revisiting the limits to growth after peak oil, Am. Sci., 97, 230-237, (2009)
[30] Hartl, R. F.; Sethi, S. P.; Vickson, R. G., A survey of the maximum principles for optimal control problems with state constraints, SIAM Rev., 37, 181-218, (1995) · Zbl 0832.49013
[31] Harrison, M., Valuing the future: The social discount rate in cost-benefit analysis, (2010), Canberra
[32] P. Hartman, Ordinary Differential Equations (J. Wiley and Sons, New York, 1964). · Zbl 0125.32102
[33] Jones, C. I., Growth: With or without scale effects?, Am. Econ. Rev., 89, 139-144, (1999)
[34] Jones, C. I., Growth and ideas, Handbook of Economic Growth, 1B, 1063-1111, (2005)
[35] Koopmans, T. C., On the concept of optimal economic growth, (1965)
[36] Laitner, J.; Stolyarov, D., Aggregate returns to scale and embodied technical change: Theory and measurement using stock market data, J. Monet. Econ., 51, 191-233, (2004)
[37] Li, W. C Y.; Hall, B. H., Depreciation of business R&D capital, (2016), Suitland, MD
[38] D. H. Meadows, D. L. Meadows, J. Randers, and W. W. Behrens III, The Limits to Growth: A Report for the Club of Rome’s Project on the Predicament of Mankind (Universe Books, New York, 1972).
[39] Michel, P., On the transversality condition in infinite horizon optimal problems, Econometrica, 50, 975-985, (1982) · Zbl 0483.90026
[40] Nordhaus, W. D., A review of the Stern review on the economics of climate change, J. Econ. Lit., 45, 686-702, (2007)
[41] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Fizmatgiz, Moscow, 1961; Pergamon, Oxford, 1964). · Zbl 0102.31901
[42] Ramsey, F. P., A mathematical theory of saving, Econ. J., 38, 543-559, (1928)
[43] Romer, P., Cake eating, chattering, and jumps: Existence results for variational problems, Econometrica, 54, 897-908, (1986) · Zbl 0595.49002
[44] Seierstad, A.; Sydsæter, K., Sufficient conditions in optimal control theory, Int. Econ. Rev., 18, 367-391, (1977) · Zbl 0392.49010
[45] A. Seierstad and K. Sydsæter, Optimal Control Theory with Economic Applications (North-Holland, Amsterdam, 1987). · Zbl 0613.49001
[46] Shell, K., Applications of Pontryagin’s maximum principle to economics, (1969), Berlin · Zbl 0177.23403
[47] Solow, R. M., Intergenerational equity and exhaustible resources, Rev. Econ. Stud., 41, 29-45, (1974) · Zbl 0304.90019
[48] N. H. Stern, The Economics of Climate Change: The Stern Review (Cambridge Univ. Press, Cambridge, 2007).
[49] Stiglitz, J., Growth with exhaustible natural resources: Efficient and optimal growth paths, Rev. Econ. Stud., 41, 123-137, (1974) · Zbl 0353.90010
[50] Turner, G., Is global collapse imminent?, (2014), Melbourne
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.