×

zbMATH — the first resource for mathematics

Positivity of denominator vectors of skew-symmetric cluster algebras. (English) Zbl 1423.13120
Summary: In this paper, we prove that positivity of denominator vectors holds for any skew-symmetric cluster algebra.

MSC:
13F60 Cluster algebras
05E40 Combinatorial aspects of commutative algebra
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Caldero, P.; Chapoton, F.; Schiffler, R., Quivers with relations arising from clusters (\(A_n\) case), Trans. Amer. Math. Soc., 358, 3, 1347-1364, (2006) · Zbl 1137.16020
[2] Caldero, P.; Keller, B., From triangulated categories to cluster algebras II, Ann. Sci. Éc. Norm. Supér. (4), 39, 983-1009, (2006) · Zbl 1115.18301
[3] Cao, P.; Li, F., Some conjectures on generalized cluster algebras via the cluster formula and D-matrix pattern, J. Algebra, 493, 57-78, (2018) · Zbl 1432.13016
[4] Ceballos, C.; Pilaud, V., Denominator vectors and compatibility degrees in cluster algebras of finite type, Trans. Amer. Math. Soc., 367, 2, 1421-1439, (2015) · Zbl 1350.13020
[5] Fomin, S.; Shapiro, M.; Thurston, D., Cluster algebras and triangulated surfaces. I. cluster complexes, Acta Math., 201, 1, 83-146, (2008) · Zbl 1263.13023
[6] Fomin, S.; Zelevinsky, A., Cluster algebras. I. foundations, J. Amer. Math. Soc., 15, 2, 497-529, (2002) · Zbl 1021.16017
[7] Fomin, S.; Zelevinsky, A., Cluster algebras. IV. coefficients, Compos. Math., 143, 112-164, (2007) · Zbl 1127.16023
[8] Gekhtman, M.; Shapiro, M.; Vainshtein, A., On the properties of the exchange graph of a cluster algebra, Math. Res. Lett., 15, 321-330, (2008) · Zbl 1146.16008
[9] Gross, M.; Hacking, P.; Keel, S.; Kontsevich, M., Canonical bases for cluster algebras, J. Amer. Math. Soc., 31, 497-608, (2018) · Zbl 1446.13015
[10] Lee, K.; Schiffler, R., Positivity for cluster algebras, Ann. of Math., 182, 73-125, (2015) · Zbl 1350.13024
[11] Reading, N.; Stella, S., Initial-seed recursions and dualities for d-vectors, Pacific J. Math., 293, 1, 179-206, (2018) · Zbl 1423.13132
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.