×

Coherent Tannaka duality and algebraicity of Hom-stacks. (English) Zbl 1423.14010

Summary: We establish Tannaka duality for noetherian algebraic stacks with affine stabilizer groups. Our main application is the existence of \(\underline{\text{Hom}}\) -stacks in great generality.

MSC:

14A20 Generalizations (algebraic spaces, stacks)
14D23 Stacks and moduli problems
18D10 Monoidal, symmetric monoidal and braided categories (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv Link

References:

[1] 10.1090/S1056-3911-2010-00569-3 · Zbl 1225.14020
[2] 10.1090/S1056-3911-04-00377-7 · Zbl 1081.14005
[3] 10.1016/j.jpaa.2009.11.016 · Zbl 1205.14014
[4] 10.5802/aif.2833 · Zbl 1314.14095
[5] 10.1307/mmj/1465329012 · Zbl 1346.14069
[6] 10.1007/s00229-005-0602-1 · Zbl 1094.14001
[7] 10.1007/s00229-006-0029-3
[8] 10.4310/CJM.2016.v4.n4.a1 · Zbl 1356.14006
[9] 10.1016/j.jalgebra.2013.09.050 · Zbl 1327.14079
[10] 10.1016/j.jalgebra.2008.09.034 · Zbl 1166.14029
[11] ; Bucur, Introduction to the theory of categories and functors. Introduction to the theory of categories and functors. Pure Appl. Math., 19, (1968) · Zbl 0197.29205
[12] 10.1007/978-0-8176-4575-5_3
[13] 10.1007/s00039-012-0204-5 · Zbl 1272.14005
[14] 10.1007/BF02699291
[15] ; Grothendieck, Inst. Hautes Études Sci. Publ. Math., 24, 5, (1965)
[16] 10.1007/BF02684343 · Zbl 0144.19904
[17] 10.1007/BF02732123
[18] 10.24033/bsmf.2455 · Zbl 1058.14003
[19] 10.24033/asens.1195 · Zbl 0204.36601
[20] 10.1007/s00208-012-0843-8 · Zbl 1285.14017
[21] ; Gabriel, Bull. Soc. Math. France, 90, 323, (1962)
[22] 10.14231/2017-026
[23] 10.1007/s00209-014-1321-7 · Zbl 1346.14005
[24] 10.1515/crelle-2014-0057 · Zbl 1362.14012
[25] 10.1016/j.aim.2013.12.002 · Zbl 1408.14014
[26] 10.1307/mmj/1434731927 · Zbl 1349.14013
[27] 10.1112/S0010437X17007394 · Zbl 1390.14057
[28] 10.1017/S1474748017000366 · Zbl 1440.14083
[29] 10.1112/topo.12057 · Zbl 1423.14126
[30] 10.1007/3-540-27950-4 · Zbl 1118.18001
[31] ; Kollár, Current developments in algebraic geometry. Current developments in algebraic geometry. Math. Sci. Res. Inst. Publ., 59, 227, (2012)
[32] 10.1007/s002220050351 · Zbl 0938.14003
[33] 10.1007/978-3-540-24899-6
[34] ; Lazard, C. R. Acad. Sci. Paris, 258, 6313, (1964)
[35] 10.1007/978-1-4612-9839-7
[36] ; Matsumura, Commutative algebra. Commutative algebra. Mathematics Lecture Note Series, 56, (1980) · Zbl 0441.13001
[37] ; Matsumura, Commutative ring theory. Commutative ring theory. Cambridge Studies in Adv. Math., 8, (1989) · Zbl 0666.13002
[38] 10.24033/bsmf.2293 · Zbl 0914.13002
[39] 10.1016/j.aim.2004.08.017 · Zbl 1084.14004
[40] 10.1007/s00209-005-0875-9 · Zbl 1096.14007
[41] 10.1215/S0012-7094-06-13414-2 · Zbl 1114.14002
[42] 10.1515/CRELLE.2007.012 · Zbl 1137.14004
[43] 10.1007/BFb0059504 · Zbl 0195.22701
[44] 10.1007/BF01390094 · Zbl 0227.14010
[45] 10.24033/bsmf.2588 · Zbl 1215.14004
[46] 10.1016/j.jalgebra.2011.01.006 · Zbl 1230.14005
[47] 10.1080/00927872.2010.488678 · Zbl 1235.14007
[48] 10.1016/j.jalgebra.2014.09.012 · Zbl 1308.14006
[49] 10.1093/imrn/rnv142 · Zbl 1353.14003
[50] 10.1007/s00229-005-0616-8 · Zbl 1094.14002
[51] 10.1515/crelle-2014-0053 · Zbl 1428.18030
[52] ; Artin, Théorie des topos et cohomologie étale des schémas, Tome 3 : Exposés IX-XIX. Théorie des topos et cohomologie étale des schémas, Tome 3 : Exposés IX-XIX. Lecture Notes in Math., 305, (1973)
[53] ; Tannaka, Tohoku Math. J., 45, 1, (1939)
[54] 10.1515/crll.2004.2004.577.1 · Zbl 1077.14004
[55] 10.2140/ant.2016.10.695 · Zbl 1343.14020
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.