zbMATH — the first resource for mathematics

Some conditional limiting theorems for symmetric Markov processes with tightness property. (English) Zbl 1423.60117
Summary: Let \(X\) be an \(\mu \)-symmetric irreducible Markov process on \(I\) with strong Feller property. In addition, we assume that \(X\) possesses a tightness property. In this paper, we prove some conditional limiting theorems for the process \(X\). The emphasis is on conditional ergodic theorem. These results are also discussed in the framework of one-dimensional diffusions.
60J25 Continuous-time Markov processes on general state spaces
37A30 Ergodic theorems, spectral theory, Markov operators
47A35 Ergodic theory of linear operators
60J60 Diffusion processes
Full Text: DOI Euclid
[1] L. A. Breyer and G. O. Roberts. A quasi-ergodic theorem for evanescent processes. Stochastic Process. Appl.84 (1999), 177-186. · Zbl 0996.60085
[2] N. Champagnat, K. Coulibaly-Pasquier, and D. Villemonais. Criteria for exponential convergence to quasi-stationary distributions and applications to multi-dimensional diffusions. Séminaire de Probabilités XLIX, Lecture Notes in Math., vol. 2215, Springer, Cham (2018), 165-182.
[3] N. Champagnat and D. Villemonais. Exponential convergence to quasi-stationary distribution and \(Q\)-process. Probab. Theory Related Fields164 (2016), 243-283. · Zbl 1334.60015
[4] N. Champagnat and D. Villemonais. Uniform convergence to the \(Q\)-process. Electron. Commun. Probab.22(33) (2017), 1-7. · Zbl 1368.60079
[5] J. Chen and S. Jian. A deviation inequality and quasi-ergodicity for absorbing Markov processes. Ann. Mat. Pur. Appl.197 (2018), 641-650. · Zbl 1395.60099
[6] J. Chen, H. Li, and S. Jian. Some limit theorems for absorbing Markov processes. J. Phys. A: Math. Theor.45 (2012), 345003. · Zbl 1260.60150
[7] D. C. Flaspohler. Quasi-stationary distributions for absorbing continuous-time denumerable Markov chains. Ann. Inst. Statist. Math.26 (1974), 351-356. · Zbl 0344.60039
[8] M. Fukushima, Y. Oshima, and M. Takeda. Dirichlet Forms and Symmetric Markov Processes, 2nd rev. and ext. ed. Walter de Gruyter, Berlin (2010).
[9] G. He. A note on the quasi-ergodic distribution of one-dimensional diffusions. C. R. Math. Acad. Sci. Paris356 (2018), 967-972. · Zbl 1394.60082
[10] G. He, H. Zhang, and Y. Zhu. On the quasi-ergodic distribution of absorbing Markov processes. Statist. Probab. Lett.149 (2019), 116-123. · Zbl 1458.60086
[11] K. Itô. Essentials of Stochastic Processes. American Mathematical Society, Providence (2006). · Zbl 1118.60003
[12] S. Méléard and D. Villemonais. Quasi-stationary distributions and population processes. Probab. Surv.9 (2012), 340-410. · Zbl 1261.92056
[13] Y. Miura. Ultracontractivity for Markov semigroups and quasi-stationary distributions. Stoch. Anal. Appl.32 (2014), 591-601. · Zbl 1307.47044
[14] W. Oçafrain. Quasi-stationarity and quasi-ergodicity for discrete-time Markov chains with absorbing boundaries moving periodically. ALEA, Lat. Am. J. Probab. Math. Stat.15 (2018), 429-451. · Zbl 1390.60023
[15] M. Takeda. A tightness property of a symmetric Markov process and the uniform large deviation principle. Proc. Am. Math. Soc.141 (2013), 4371-4383. · Zbl 1274.60083
[16] M. Takeda. Existence and uniqueness of quasi-stationary distributions for symmetric Markov processes with tightness property. To appear in J. Theoret. Probab. (2019). · Zbl 1450.60039
[17] M. Takeda. Compactness of symmetric Markov semigroups and boundedness of eigenfunctions. To appear in Trans. Amer. Math. Soc. (2019). · Zbl 07110612
[18] H. Zhang and G. He. Domain of attraction of quasi-stationary distribution for one-dimensional diffusions. Front. Math. China11 (2016), 411-421. · Zbl 1337.60199
[19] J. Zhang, S. Li, and R. Song. Quasi-stationarity and quasi-ergodicity of general Markov processes. Sci. China Math.57 (2014), 2013-2024. · Zbl 1309.60078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.