zbMATH — the first resource for mathematics

Precession of the Kovalevskaya and Goryachev-Chaplygin tops. (English) Zbl 1428.70013
Summary: The change of the precession angle is studied analytically and numerically for two classical integrable tops: the Kovalevskaya top and the Goryachev-Chaplygin top. Based on the known results on the topology of Liouville foliations for these systems, we find initial conditions for which the average change of the precession angle is zero or can be estimated asymptotically. Some more difficult cases are studied numerically. In particular, we show that the average change of the precession angle for the Kovalevskaya top can be non-zero even in the case of zero area integral.
70E17 Motion of a rigid body with a fixed point
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
Full Text: DOI
[1] Appelroth, H. H., Sur les cas particuliers les plus simples du mouvement d’un gyroscope pesant asymmetrique de M-me Kowalewsky, Mat. Sb., 1910, vol. 27, no. 3, pp. 262-334 (Russian).
[2] Appelroth, H. H., Sur les cas particuliers les plus simples du mouvement d’un gyroscope pesant asymmétrique de M-me Kowalewsky (2-me article), Mat. Sb., 1911, vol. 27, no. 4, pp. 477-559 (Russian).
[3] Arnold, V. I. and Avez, A., Problèmes ergodiques de la Mécanique Classique, Paris: Gauthier-Villars, 1967. · Zbl 0149.21704
[4] Arnol’d, V.I., Mathematical Methods of Classical Mechanics, 2nd ed., Grad. Texts in Math., vol. 60, New York: Springer, 1989. · Zbl 0692.70003
[5] Bechlivanidis, C. and van Moerbeke, P., The Goryachev — Chaplygin Top and the Toda Lattice, Comm. Math. Phys., 1987, vol. 110, no. 2, pp. 317-324. · Zbl 0638.58010
[6] Bolsinov, A. V., Borisov, A. V., and Mamaev, I. S., Hamiltonization of Non-Holonomic Systems in the Neighborhood of Invariant Manifolds, Regul. Chaotic Dyn., 2011, vol. 16, no. 5, pp. 443-464. · Zbl 1309.37049
[7] Bolsinov, A. V., Borisov, A. V., and Mamaev, I. S., Topology and Stability of Integrable Systems, Russian Math. Surveys, 2010, vol. 65, no. 2, pp. 259-318; see also: Uspekhi Mat. Nauk, 2010, vol. 65, no. 2, pp. 71-132. · Zbl 1202.37077
[8] Bolsinov, A. V. and Fomenko, A. T., Integrable Hamiltonian Systems: Geometry, Topology, Classification, Boca Raton, Fla.: Chapman & Hall/CRC, 2004. · Zbl 1056.37075
[9] Borisov, A. V. and Mamaev, I. S., Rigid Body Dynamics, De Gruyter Stud. Math. Phys., vol. 52, Berlin: De Gruyter, 2018. · Zbl 1450.70001
[10] Borisov, A. V., Kilin, A. A., and Mamaev, I. S., The Problem of Drift and Recurrence for the Rolling Chaplygin Ball, Regul. Chaotic Dyn., 2013, vol. 18, no. 6, pp. 832-859. · Zbl 1286.70007
[11] Chaplygin, S. A., A New Case of Rotation of a Heavy Rigid Body, Supported at One Point, 118-124 (1948), Moscow
[12] Charlier, C. V. L., Die Mechanik des Himmels: Vorlesungen in 2 Vols.: Vol. 1, Leipzig: Veit, 1902.
[13] Cornfeld, I. P., Fomin, S. V., and Sinai, Ya. G., Ergodic Theory, Grundlehren Math. Wiss., vol. 245, New York: Springer, 1982. · Zbl 0493.28007
[14] Gashenenko, I. N., Gorr, G. V., and Kovalev, A. M., Classical Problems of the Rigid Body Dynamics, Kiev: Naukova Dumka, 2012 (Russian). · Zbl 1284.70002
[15] Goldstein, H., Poole, Ch. P., Jr., and Safko, J. L., Classical Mechanics, 3rd ed., Reading, Mass.: Addison-Wesley, 2001. · Zbl 1132.70001
[16] Golubev, V. V., Lectures on Integration of the Equations of Motion of a Rigid Body about a Fixed Point, Jerusalem: Israel Program for Scientific Translations, 1960. · Zbl 0122.18701
[17] Goriatchev, D. N., Sur le mouvement d’un solide pesant autour d’un point fixe dans le cas A = B = 4C, Mat. Sb., 1900, vol. 21, no. 3, pp. 431-438 (Russian).
[18] Joukovsky, N. E., Interprétation géométrique du cas du mouvement d’un solide pesant autour d’un point fixe considéré par M-me S. V. Kowalewsky, Mat. Sb., 1896, vol. 19, no. 1, pp. 45-93 (Russian).
[19] Kharlamov, M. P., Topological Analysis of Integrable Problems of Rigid Body Dynamics, Leningrad: Leningr. Gos. Univ., 1988 (Russian).
[20] Kowalevski, S., Sur le probléme de la rotation d’un corps solide autour d’un point fixe, Acta Math., 1889, vol. 12, pp. 177-232. · JFM 21.0935.01
[21] Kowalevski, S., Sur une propriétédu système d’équations différentielles qui définit la rotation d’un corps solide autour d’un point fixe, Acta Math., 1890/1891, vol. 14, pp. 81-93. · JFM 22.0921.02
[22] Kozlov, V. V., On the Qualitative Analysis of Motion of a Solid Body in the Goriachev — Chaplygin Problem, J. Appl. Math. Mech., 1977, vol. 41, no. 2, pp. 216-224; see also: Prikl. Mat. Mekh., 1977, vol. 41, no. 2, pp. 225-233. · Zbl 0387.70011
[23] Kozlov, V. V., Methods of Qualitative Analysis in the Dynamics of a Rigid Body, 2nd ed., Izhevsk: R&C Dynamics, 2000 (Russian). · Zbl 1101.70003
[24] Kozlov, V. V., The Behaviour of Cyclic Variables in Integrable Systems, J. Appl. Math. Mech., 2013, vol. 77, no. 2, pp. 128-136; see also: Prikl. Mat. Mekh., 2013, vol. 77, no. 2, pp. 179-190. · Zbl 1282.37031
[25] Orel, O. E., Rotation Function for Integrable Problems That Reduce to Abel Equations. Orbital Classification of Goryachev — Chaplygin Systems, Sb. Math., 1995, vol. 186, no. 2, pp. 271-296; see also: Mat. Sb., 1995, vol. 186, no. 2, pp. 105-128. · Zbl 0858.70010
[26] Poincaré, H., Mémoire sur les courbes définies par une équation différentielle: 2, J. Math. Pures Appl., 1882, vol. 8, pp. 251-296. · JFM 14.0666.01
[27] Poincaré, H., Sur les séries trigonométriques, Comptes rendus hebdomadaires des séances de l’Académie des sciences, 1885, vol. 101, pp. 1131-1134. · JFM 17.0223.02
[28] Weyl, H., Mean Motion, Amer. J. Math., 1938, vol. 60, no. 4, pp. 889-896. · JFM 64.0256.02
[29] Weyl, H., Mean Motion: 2, Amer. J. Math., 1939, vol. 61, no. 1, pp. 143-148. · Zbl 0020.17203
[30] Whittaker, E. T., A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an Introduction to the Problem of Three Bodies, Cambridge: Cambridge Univ. Press, 1988. · Zbl 0665.70002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.