×

Criteria for convexity of closed sets in Banach spaces. (English. Russian original) Zbl 1429.52001

Proc. Steklov Inst. Math. 304, 190-204 (2019); translation from Tr. Mat. Inst. Steklova 304, 205-220 (2019).
Let \(S\) be a closed subset of a Banach space \(\mathbb{X}\). For \(x \in X\), the notations \(T_S^B(x)\), \(T_S^C(x)\), \(N_S^C(x)\) and respectively \(N_S^P(x)\) designate the Bouligand tangent cone, the Clarke tangent cone, the Clarke normal cone and respectively the proximal normal cone to \(S\) at \(x\). The author proofs the equivalence of the following statements: (i) \(S\) is convex; (ii) for any \(x \in S\), \(S \subset x + T_S^B(x)\); (iii) for any \(x \in S\), \(S \subset x + T_S^C(x)\); (iv) for any \(x \in S\), \(S \subset x + \big(N_S^C(x)\big)^*\). If in addition, the space \(\mathbb{X}\) is uniformly convex, then the above statements are also equivalent with: (v) \(S \subset x + \big(N_S^P\big)^*(x)\). These criteria of convexity are then used to derive sufficient conditions for the convexity of the images of convex sets under nonlinear mappings and multifunctions.

MSC:

52A05 Convex sets without dimension restrictions (aspects of convex geometry)
26B25 Convexity of real functions of several variables, generalizations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ben-El-Mechaiekh, H.; Kryszewski, W., “Equilibria of set-valued maps on nonconvex domains,”, Trans. Am. ^Math. Soc., 349, 4159-4179, (1997) · Zbl 0887.47040
[2] Bobylev, N. A.; Emel’yanov, S. V.; Korovin, S. K., “Convexity of images of convex sets under smooth maps,”, Comput. Math. ^Model., 15, 213-222, (2004) · Zbl 1111.90118
[3] Borwein, J. M.; Giles, J. R., “The proximal normal formula in Banach space,”, Trans. Am. ^Math. Soc., 302, 371-381, (1987) · Zbl 0632.49007
[4] Borwein, J. M.; Strojwas, H. M., “Proximal analysis and boundaries of closed sets in Banach space. II: Applications,”, Can. J. ^Math., 39, 428-472, (1987) · Zbl 0621.46019
[5] F. H. Clarke, Optimization and Nonsmooth Analysis (J. Wiley & Sons, New York, 1983), Can. Math. Soc. Ser. Monogr. Adv. Texts. · Zbl 0582.49001
[6] F. H. Clarke, Methods of Dynamic and Nonsmooth Optimization (SIAM, Philadelphia, PA, 1989), CBMS-NSF Reg. Conf. Ser. Appl. Math. 57.
[7] Clarke, F. H., No article title, Necessary Conditions in Dynamic Optimization, 173, 816, (2005)
[8] Clarke, F. H.; Ledyaev, Yu S.; Stern, R. J., “Fixed points and equilibria in nonconvex sets,”, Nonlinear Anal., Theory Methods Appl., 25, 145-161, (1995) · Zbl 0840.49010
[9] Clarke, F. H.; Ledyaev, Yu S.; Stern, R. J., “Fixed point theory via nonsmooth analysis,”, (1995), Providence, RI · Zbl 0874.47032
[10] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, and P. R. Wolenski, Nonsmooth Analysis and Control Theory (Springer, New York, 1998), Grad. Texts Math. 178.
[11] Emel’yanov, S. V.; Korovin, S. K.; Bobylev, N. A., “On the convexity of the images of convex sets under smooth mappings,”, Dokl. Math., 66, 55-57, (2002) · Zbl 1146.49301
[12] Klee, V. L., “Convex sets in linear spaces,”, Duke Math. J., 18, 443-466, (1951) · Zbl 0042.36201
[13] Lebourg, G., “Review of the paper ‘The convexity principle and its applications’ by B.T. Polyak,”, (2004)
[14] S, Yu; Ledyaev; Zhu, Q. J., “Implicit multifunction theorems,”, Set-Valued Anal., 7, 209-238, (1999) · Zbl 0952.49017
[15] Loewen, P. D., “The proximal normal formula in Hilbert space,”, Nonlinear Anal., Theory Methods Appl., 11, 979-995, (1987) · Zbl 0647.49010
[16] Polyak, B. T., “Convexity of nonlinear image of a small ball with applications to optimization,”, Set-Valued Anal, 9, 159-168, (2001) · Zbl 1006.52001
[17] Polyak, B. T., “The convexity principle and its applications,”, Bull. Braz. Math. Soc. (N.S.), 34, 59-75, (2003) · Zbl 1059.49025
[18] Reißig, G., “Convexity of reachable sets of nonlinear ordinary differential equations,”, Autom. Remote Control, 68, 1527-1543, (2007) · Zbl 1145.93007
[19] Treiman, J. S., “Characterization of Clarke’s tangent and normal cones in finite and infinite dimensions,”, Nonlinear Anal., Theory Methods Appl., 7, 771-783, (1983) · Zbl 0515.49013
[20] Uderzo, A., “On the Polyak convexity principle and its application to variational analysis,”, Nonlinear Anal., Theory Methods Appl., 91, 60-71, (2013) · Zbl 1284.52002
[21] Uderzo, A., “Convexity of the images of small balls through nonconvex multifunctions,”, Nonlinear Anal., Theory Methods Appl., 128, 348-364, (2015) · Zbl 1326.49026
[22] Vakhrameev, S. A., “A note on convexity in smooth nonlinear systems,”, J. Math. Sci., 100, 2470-2490, (2000) · Zbl 0976.58011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.